Under optimized synthesis conditions, for the first time, polyisobutylene-based polyurethane (PIB-PU) is prepared with 70% PIB soft segment (i.e., a bioinert and calcification-resistant PU) with M > 100 000 Da, 32 MPa ultimate strength, and 630% elongation. The key parameters for this achievement are a) the precise stoichiometry of the polyurethane forming reaction, specifically the use of highly purified di-isocyanate (4,4'-methylene-bis (phenyl isocyanate), MDI), and b) the increased solid content of the synthesis solution to the limit beyond which increased viscosity prevents stirring. The shape of the stress-strain trace of PIB-PU indicates a two-step failure starting with a reversible elastic (Hookean) region up to ≈50% yield, followed by a slower linearly increasing high-modulus-deformation region suggesting the strengthening of PIB soft segments by entanglement/catenation, and the hard segments by progressively ordering urethane domains. This PIB-PU is a candidate for a fully synthetic bioprosthetic heart valve since preliminary studies show that PIB-PU has impressive fatigue life.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200147DOI Listing

Publication Analysis

Top Keywords

polyisobutylene-based polyurethane
8
heart valve
8
pib soft
8
synthesis high-molecular-weight
4
high-molecular-weight strength
4
strength polyisobutylene-based
4
polyurethane development
4
development synthetic
4
synthetic heart
4
valve optimized
4

Similar Publications

Under optimized synthesis conditions, for the first time, polyisobutylene-based polyurethane (PIB-PU) is prepared with 70% PIB soft segment (i.e., a bioinert and calcification-resistant PU) with M > 100 000 Da, 32 MPa ultimate strength, and 630% elongation.

View Article and Find Full Text PDF

The surface properties and biocompatibility of a class of thermoplastic polyurethanes (TPUs) with applications in blood-contacting medical devices have been studied. Thin films of commercial TPUs and novel polyisobutylene (PIB)-poly(tetramethylene oxide) (PTMO) TPUs were characterized by contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM) imaging. PIB-PTMO TPU surfaces have significantly higher C/N ratios and lower amounts of oxygen than the theoretical bulk composition, which is attributed to surface enrichment of PIB.

View Article and Find Full Text PDF

Long term in vitro biostability of thermoplastic polyurethanes (TPUs) containing mixed polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) soft segment was studied under accelerated conditions in 20% H(2)O(2) solution containing 0.1M CoCl(2) at 50 °C to predict resistance to metal ion oxidative degradation (MIO) in vivo. The PIB-based TPUs showed significant oxidative stability as compared to the commercial controls Pellethane 2363-55D and 2363-80A.

View Article and Find Full Text PDF

Novel polyisobutylene-based thermoplastic elastomers are introduced as prospective implant materials for soft tissue replacement and reconstruction. In comparison, poly(ethylene terephthalate) (PET), poly(tetrafluoroethylene) (PTFE), polypropylene (PP), polyurethanes (PU), and silicones are outlined from well-established implant history as being relatively inert and biocompatible biomaterials for soft tissue replacement, especially in vascular grafts and breast implants. Some general considerations for the design and development of polymers for soft tissue replacement are reviewed from the viewpoint of material science and engineering, with special attention to synthetic materials used in vascular grafts and breast implants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!