Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T161 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T161 P/T148 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462447 | PMC |
http://dx.doi.org/10.1096/fj.202200116RR | DOI Listing |
Background: Genetic studies have established that loss of function SORL1 gene variants are associated with Alzheimer's disease (AD). SORL1 encodes an endosomal trafficking receptor, SORLA, which regulates endosomal protein recycling through its interaction with the retromer core complex (consisting of VPS26, VPS35 and VPS29). Deficits in the levels and function of the SORLA-retromer complex are thought to underlie AD.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.
View Article and Find Full Text PDFJ Neurosci
January 2025
Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India.
PPTC7 is a mitochondrial phosphatase that is essential for mitochondrial biogenesis, metabolism, protein content maintenance and transport. While the mitochondrial roles of PPTC7 are well-characterized, its roles outside the mitochondria are unclear. Here we identified a non-mitochondrial role for PPTC7 in regulating epidermal growth factor receptor (EGFR) trafficking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!