AI Article Synopsis

  • A biodegradable and shape-adaptable bioscaffold, called ILGel, has been developed to enhance the retention and effectiveness of the cytokine IL-10 for treating periodontal diseases, particularly in diabetic patients.
  • ILGel, made from a DNA hydrogel, allows for a sustained release of IL-10 over at least 7 days while promoting anti-inflammatory responses and bone regeneration by enhancing M2 macrophage activity and mesenchymal stem cell osteogenesis.
  • The treatment with ILGel significantly improved healing rates in diabetic alveolar injuries (up to 93.42%) compared to conventional IL-10 treatments, suggesting its potential for broader use in cytokine-based immunotherapy for periodontal conditions.

Article Abstract

The development of a biodegradable and shape-adaptable bioscaffold that can enhance local cytokine retention and bioactivity is essential for the application of immunotherapy in periodontal diseases. Here, we report a biodegradable, anti-inflammatory, and osteogenic ILGel that uses a physically cross-linked DNA hydrogel as a soft bioscaffold for the long-term sustained release of cytokine interleukin-10 (IL-10) to accelerate diabetic alveolar bone rebuilding. Porous microstructures of ILGel favored the encapsulation of IL-10 and maintained IL-10 bioactivity for at least 7 days. ILGel can be gradually degraded or hydrolyzed under physiological conditions, avoiding the potential undesired side effects on dental tissues. Long-term sustained release of bioactive IL-10 from ILGel not only promoted M2 macrophage polarization and attenuated periodontal inflammation but also triggered osteogenesis of mesenchymal stem cells (MSCs), leading to accelerated alveolar bone formation and healing of alveolar bone defects under diabetic conditions . ILGel treatment significantly accelerated the defect healing rate of diabetic alveolar injury up to 93.42 ± 4.6% on day 21 post treatment compared to that of free IL-10 treatment (63.30 ± 7.39%), with improved trabecular architectures. Our findings imply the potential application of the DNA hydrogel as the bioscaffold for cytokine-based immunotherapy in diabetic alveolar bone injury and other periodontal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c04769DOI Listing

Publication Analysis

Top Keywords

alveolar bone
20
diabetic alveolar
16
physically cross-linked
8
cross-linked dna
8
bone rebuilding
8
periodontal diseases
8
dna hydrogel
8
long-term sustained
8
sustained release
8
alveolar
6

Similar Publications

Introduction: Rhabdomyosarcoma (RMS) is a common pediatric orbital malignancy but is extremely rare in adults. This study assesses clinical and radiographic features, management, and outcomes in adult orbital RMS patients with comparison to pediatric patients.

Methods: A retrospective chart review from 2000-2023 at Bascom Palmer Eye Institute was conducted evaluating patients aged 0 to 100-years-old with biopsy-confirmed orbital RMS.

View Article and Find Full Text PDF

Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis.

ACS Biomater Sci Eng

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China.

Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect.

View Article and Find Full Text PDF

The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the impact of a combination of immediate implant placement with maxillary sinus augmentation (MSA) solely using platelet-rich fibrin (PRF) on guided bone regeneration.

Materials And Methods: An interventional before-after (pre-post) study design was used with 30 dental patients (≥18 years of age; 14 males and 16 females) with initial bone heights ranging between 4 and 6 mm. Following the general check-up and the creation of a study model, the planned implant location demonstrated an external right maxilla diameter of more than 5 mm, thereby validating the cone-beam computed tomography (CBCT) radiograph.

View Article and Find Full Text PDF

Objective: Abaloparatide (ABL) is a synthetic parathyroid hormone-related protein analog developed as an anabolic drug to treat osteoporosis. ABL increases bone mineral density (BMD) of the long bones and spine; however, the influence of ABL on alveolar bone regeneration remains unknown. This study assessed the effects of systemic ABL administration on tooth extraction socket healing and dental implant osseointegration in a preclinical rodent model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!