<b>Background and Objective:</b> Cadmium is a heavy metal that has a wide range of applications in human existence. Cadmium may bind to the protein metallothionein and decrease kidney function once it enters the body. The purpose of this study was to investigate the renal protective activity of TVLE against CdCl<sub>2</sub>-induced renal toxicity in rats. <b>Materials and Methods:</b> TVLE was prepared and characterized using instrumental analysis and spectral data. Furthermore, the IC<sub>50</sub> of TVLE against the Vero renal carcinoma cell line was calculated. Adult albino rats were used to assess the renal protective activity of TVLE (150 and 300 mg kg<sup>1</sup> b.wt.) in CdCl<sub>2</sub>-treated rats. <b>Results:</b> IC<sub>50 </sub>of TVLE against Vero cell line equals 148.25 μg mL<sup>1</sup>. The daily oral administration of TVLE at concentrations of 150 and 300 mg kg<sup>1</sup> b.wt. for 21 days to CdCl<sub>2</sub>-treated rates resulted in a significant improvement in tumour volume and tumour weight, urea, creatinine, uric acid, TNF-α, NOx, TBARs, GSH, CAT, SOD, GPx and VEGF-C gene expression in CdCl<sub>2</sub>-treated rats. Furthermore, TVLE almost normalized these effects in renal histoarchitecture. <b>Conclusion:</b> The biochemical, histological and MRI examinations of the current study suggested that TVLE have renal protective activity against CdCl<sub>2</sub>-induced renal toxicity in rats.

Download full-text PDF

Source
http://dx.doi.org/10.3923/pjbs.2022.313.321DOI Listing

Publication Analysis

Top Keywords

protective activity
16
activity tvle
12
renal protective
12
tvle
9
renal
8
cdcl2-induced renal
8
renal toxicity
8
toxicity rats
8
tvle vero
8
150 300
8

Similar Publications

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.

View Article and Find Full Text PDF

Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!