An Optimally Designed Engineering Exosome-Reductive COF Integrated Nanoagent for Synergistically Enhanced Diabetic Fester Wound Healing.

Small

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Published: July 2022

Oxidative stress and local overactive inflammation have been considered major obstacles in diabetic wound treatment. Although antiphlogistic tactics have been reported widely, they are also challenged by pathogen contamination and compromised angiogenesis. Herein, a versatile integrated nanoagent based on 2D reductive covalent organic frameworks coated with antibacterial immuno-engineered exosome (PCOF@E-Exo) is reported to achieve efficient and comprehensive combination therapy for diabetic wounds. The E-Exo is collected from TNF-α-treated mesenchymal stem cells (MSCs) under hypoxia and encapsulated cationic antimicrobial carbon dots (CDs). This integrated nanoagent not only significantly scavenges reactive oxygen species and induces anti-inflammatory M2 macrophage polarization, but also stabilizes hypoxia-inducible factor-1α (HIF-1α). More importantly, the PCOF@E-Exo exhibits intriguing bactericide capabilities toward Gram-negative, Gram-positive, and drug-resistant bacteria, showing favorable intracellular bacterial destruction and biofilm permeation. In vivo results demonstrate that the synergetic impact of suppressing oxidative injury and tissue inflammation, promoting angiogenesis and eradicating bacterial infection, could significantly accelerate the infected diabetic fester wound healing with better therapeutic benefits than monotherapy or individual antibiotics. The proposed strategy can inspire further research to design more delicate platforms using the combination of immunotherapy with other therapeutic methods for more efficient ulcerated diabetic wounds treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202200895DOI Listing

Publication Analysis

Top Keywords

integrated nanoagent
12
diabetic fester
8
fester wound
8
wound healing
8
diabetic wounds
8
diabetic
5
optimally designed
4
designed engineering
4
engineering exosome-reductive
4
exosome-reductive cof
4

Similar Publications

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

The powerful antioxidant properties of C60 fullerenes have been widely used in biomedical nanotechnology. Owing to the negative effects of free radicals in oxidative stress processes, antioxidants are required to protect injured muscles. Here, the effect of water-soluble C60 fullerenes (daily oral dose 1 mg/kg) on the process of restoration of contractile activity of skeletal muscle of rats (muscle gastrocnemius) 15 days after the initiation of open trauma of different severity was studied for the first time.

View Article and Find Full Text PDF

Controlled Synthesis of the FeB Nanometallic Glasses with Stronger Electron Donating Capability to Activate Molecular Oxygen for the Enhanced Ferroptosis Therapy.

Adv Healthc Mater

December 2024

School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China.

Considering the strong electron-donating ability and the superior biocompatibility, the integration of zero-valent iron nanostructure Fe (electron-reservoir) and zero-valent boron nanostructure B offers great promise for fabricating novel ferroptosis nanoagents. Nevertheless, the controlled and facile synthesis of alloyed Fe and B nanostructure-FeB nanometallic glasses (NMGs) has remained a long-standing challenge. Herein, a complexion-reduction strategy is proposed for the controlled synthesis of FeB NMGs with greater electron donating capacity to activate the molecular oxygen for improved ferroptosis therapy.

View Article and Find Full Text PDF

Self-catalyzed nitric oxide nanocomplexes induce ferroptosis for cancer immunotherapy.

J Control Release

January 2025

MoE Frontiers Science Center For Precision Oncology, Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China. Electronic address:

Ferroptosis, triggered by membrane lipid peroxidation (LPO) and diminished antioxidants, can be induced by intracellular iron (II, Fe). However, the role of nitric oxide (NO) in causing Fe overload for ferroptosis remains uncertain. This study reveals that NO can stimulate endogenous Fe release by upregulating heme oxygenase 1 (HMOX1) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!