Nearly 700,000 tonnes of peanuts are consumed annually in Europe. In the last 5 years, peanuts imported from China exceeded legal European Union (EU) aflatoxin limits more than 180 times. To prevent and mitigate aflatoxin contamination, the stages of the peanut chain most vulnerable to contamination must be assessed to determine how to interrupt the movement of contaminated produce. This paper discusses effective approaches for early identification and proactive mitigation of aflatoxins in peanuts to reduce a contaminant that is an impediment to trade. We consider (i) the results of the EU Commission's Directorate-General (DG) for Health and Food Safety review, (ii) the Code of Practice for the prevention and reduction of aflatoxins in peanuts issued by Food and Agriculture Organization/World Health Organization, (iii) the results from previous EU-China efforts, and (iv) the latest state-of-the-art technology in pre- and postharvest methods as essential elements of a sustainable program for integrated disease and aflatoxin management. These include preharvest use of biocontrol, biofertilizers, improved tillage, forecasting, and risk monitoring based on analysis of big data obtained by remote sensing. At the postharvest level, we consider rapid testing methods along the supply chain, Decision Support Systems for effective silo management, and effective risk monitoring during drying, storage, and transport. Available guidance and current recommendations are provided for successful practical implementation. Food safety standards also influence stakeholder and consumer trust and confidence, so we also consider the results of multiactor stakeholder group discussions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.12973DOI Listing

Publication Analysis

Top Keywords

aflatoxins peanuts
12
effective approaches
8
approaches early
8
early identification
8
identification proactive
8
proactive mitigation
8
mitigation aflatoxins
8
food safety
8
risk monitoring
8
peanuts
5

Similar Publications

Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics.

Food Chem

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:

Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.

View Article and Find Full Text PDF

Background: Aflatoxin B (AFB), a potent carcinogen produced by species, is a prevalent contaminant in oil crops, with prolonged exposure associated with liver damage. Home-made peanut oil (HMPO) produced by small workshops in Guangzhou is heavily contaminated with AFB. Despite the enactment of the Small Food Workshops Management Regulations (SFWMR), no quantitative assessment has been conducted regarding its impact on food contamination and public health.

View Article and Find Full Text PDF

Degradation of AFB in edible oil by aptamer-modified TiO composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity.

Food Chem

December 2024

Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:

Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.

View Article and Find Full Text PDF

Aflatoxin Contamination of Various Staple Foods from Angola and Mozambique.

Toxins (Basel)

November 2024

CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

Aflatoxins constitute a significant risk in staple foods produced in African countries. This research aimed to analyze the total aflatoxin (AFT) contamination of various staple foods in Angola and Mozambique. A total of 233 samples of corn, peanuts, beans, rice, and cassava flour collected from farmers or local markets from the province of Cuanza Sul, Angola, and the provinces of Gaza and Inhambane, South Mozambique, were analyzed for the presence of AFT using the lateral flow strip method via AgraStrip Pro WATEX (Romer).

View Article and Find Full Text PDF

Aflatoxin B1 Contamination Association with the Seed Coat Biochemical Marker Polyphenol in Peanuts Under Intermittent Drought.

J Fungi (Basel)

December 2024

Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University, 700 University Blvd, MSC 228, Kingsville, TX 78363, USA.

Aflatoxin B1 (AFB1) contamination (AC) increases as the severity of drought stress increases in peanuts. Identifying drought-tolerant (DT) genotypes with resistance to colonization and/or infection may aid in developing peanuts resistant to aflatoxin contamination in the semi-arid tropics. The goal of this study is to identify DT genotypes with seed coat biochemical resistance to infestation and aflatoxin contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!