Anion π-π Stacking for Improved Lithium Transport in Polymer Electrolytes.

J Am Chem Soc

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Wuhan, China.

Published: June 2022

Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°∥Li° and Li°∥LiFePO cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c02260DOI Listing

Publication Analysis

Top Keywords

π-π stacking
12
polymer electrolytes
8
lithium-ion conductive
8
selective lithium-ion
8
lithium
5
anion π-π
4
stacking improved
4
improved lithium
4
lithium transport
4
transport polymer
4

Similar Publications

First-principles calculations show that the geometric and electronic properties of silicene-related systems have diversified phenomena. Critical factors of group-IV monoelements, like buckled/planar structures, stacking configurations, layer numbers, and van der Waals interactions of bilayer composites, are considered simultaneously. The theoretical framework developed provides a concise physical and chemical picture.

View Article and Find Full Text PDF

Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo W Y.

J Phys Condens Matter

December 2019

School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China.

Artificial van der Waals (vdW) heterojunctions assembled by atomically-thin two-dimensional (2D) materials have demonstrated new physical phenomena and unusual properties, thus triggering new electronic, optoelectronic, valleytronic and photocatalytic application. Herein, the electronic band structures of different vdW heterojunctions based on ternary Mo W Y (Y  =  S, Se; x  =  0-1) monolayer with five stacking orders (AA, AA[Formula: see text], A[Formula: see text]B, AB, AB[Formula: see text]) have been investigated using first principle calculations. The direct/indirect band gap has been obtained in the AA[Formula: see text] stacking type-II heterojunctions, ranging from 0.

View Article and Find Full Text PDF

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅) π-stacks of radicals, respectively.

View Article and Find Full Text PDF

A 500 and 300 MHz proton NMR study of the series of oligoarabinonucleotides 5'aAMP, 3'aAMP, aA-aA, (aA-)2aA and (aA-)3aA is presented. In addition, circular dichroism is used to study the stacking behaviour of aA-aA. The complete 1H-NMR spectral assignment of the compounds (except the tetramer) is given.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!