Photocontrol of Itaconic Acid Synthesis in .

ACS Synth Biol

State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Published: June 2022

Metabolic engineering aims to control cellular metabolic flow and maximize the production of a product of interest. Photocontrol of the activities of proteins is an effective method for accurately regulating metabolic pathways. In this study, we inserted the photosensor light-oxygen-voltage-sensing domain 2 of (AsLOV2) into selected sites of isocitrate dehydrogenase (IDH), the key enzyme in the competitive pathway of itaconic acid (ITA) synthesis, to construct photoswitchable IDH-AsLOV2 (ILOVs). These engineered light-sensitive proteins were used to regulate the metabolic flux of the tricarboxylic acid (TCA) cycle in to improve ITA production. The engineered fusion proteins ILOV2, ILOV3, ILOV6, and ILOV7 exhibited effective reversibility under the oscillation of darkness and blue light illumination . The efficacies of the intracellular photoswitches were evaluated, and an optimal photocontrol strategy was established . The ITA titer was significantly enhanced to 3.30 g/L for strain ITAΔ43, which displayed superior photoswitchable potency for ITA production compared with the strains that completely deleted the gene. The photocontrol strategy developed here can be extended for process optimization and titer improvement of other high-value bioengineering chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.2c00014DOI Listing

Publication Analysis

Top Keywords

itaconic acid
8
ita production
8
photocontrol strategy
8
photocontrol
4
photocontrol itaconic
4
acid synthesis
4
metabolic
4
synthesis metabolic
4
metabolic engineering
4
engineering aims
4

Similar Publications

Background: The rapid evolution of the COVID-19 pandemic and subsequent global immunization efforts have rendered early metabolomics studies potentially outdated, as they primarily involved non-exposed, non-vaccinated populations. This paper presents a predictive model developed from up-to-date metabolomics data integrated with clinical data to estimate early mortality risk in critically ill COVID-19 patients. Our study addresses the critical gap in current research by utilizing current patient samples, providing fresh insights into the pathophysiology of the disease in a partially immunized global population.

View Article and Find Full Text PDF

In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.

View Article and Find Full Text PDF

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.

Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.

View Article and Find Full Text PDF

Enhanced itaconic acid secretion from macrophages mediates the protection of mesenchymal stem cell-derived exosomes on lipopolysaccharide-induced acute lung injury mice.

Biol Direct

December 2024

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.

Background: Alveolar macrophages (AMs) is critical to exacerbate acute lung injury (ALI) induced by lipopolysaccharide (LPS) via inhibiting inflammation, which could by shifted by mesenchymal stem cell-derived exosomes (MSC-exos). But the underlying rationale is not fully clarified. Our study aimed to analyze the significance of itaconic acid (ITA) in mediating the protective effects of MSC-exos on LPS-induced ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!