Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lignocellulosic biomass is a potential biotemplate for disposing the burden of the uncontrollable accumulation of environmental contaminants disrupting the hydrophytic ecosystems. Herein, an efficient solar-driven catalyst was prepared using a natural three-dimensional (3D) porous lignocellulose-based (JE) fiber for wastewater treatment. Owing to the exquisite 3D microstructure and abundant hydroxyl groups, the two-dimensional lamellar graphitic carbon nitride/graphene oxide (g-CN/GO) nanocomposites were successfully synthesized and decorated on the carboxymethylated JE fiber via the electrostatic self-assembly method. The as-prepared g-CN/GO-JE (CNG-JE) photocatalyst exhibits excellent light absorption efficiency and a superior ability to accelerate photogenerated electron migration. The outstanding adsorption performance toward pollutants also contributes to the photodegradation property of CNG-JE, showing highly efficient degradation of C.I. Reactive Red 120 (99.8%), C.I. Acid Yellow 11 (99.8%), methylene blue (99.4%), Cr(VI) (98.8%), and tetracycline (87.2%). Most importantly, the lignocellulose-based CNG-JE fibers could be fabricated into a photocatalyst textile due to their flexible and weavable properties. In actual application, the CNG-JE textile can be reused for at least five cycles under the sun, demonstrating that the flexible CNG-JE textile is practical and recyclable. This study may provide a platform for constructing efficient, flexible, and weavable biomass-based porous materials for cost-effective and sustainable catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c06207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!