A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The progress of multimodal imaging combination and subregion based radiomics research of cancers. | LitMetric

AI Article Synopsis

  • Radiomics has become a critical tool in tumor diagnosis, treatment, and prognosis, but existing techniques have shown limitations based on single-modality images.
  • Focusing on the entire tumor can overlook important intra-tumoral differences, which diminishes the effectiveness of radiomic analysis.
  • The use of multimodal imaging and subregional segmentation offers a more comprehensive approach, enhancing the capture of tumor characteristics and improving radiomic performance.

Article Abstract

In recent years, with the standardization of radiomics methods; development of tools; and popularization of the concept, radiomics has been widely used in all aspects of tumor diagnosis; treatment; and prognosis. As the study of radiomics in cancer has become more advanced, the currently used methods have revealed their shortcomings. The performance of cancer radiomics based on single-modality medical images, which based on their imaging principles, only partially reflects tumor information, has been necessarily compromised. Using the whole tumor as a region of interest to extract radiomic features inevitably leads to the loss of intra-tumoral heterogeneity of, which also affects the performance of radiomics. Radiomics of multimodal images extracts various aspects of information from images of each modality and then integrates them together for model construction; thus, avoiding missing information. Subregional segmentation based on multimodal medical image combinations allows radiomics features acquired from subregions to retain tumor heterogeneity, further improving the performance of radiomics. In this review, we provide a detailed summary of the current research on the radiomics of multimodal images of cancer and tumor subregion-based radiomics, and then raised some of the research problems and also provide a thorough discussion on these issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134904PMC
http://dx.doi.org/10.7150/ijbs.71046DOI Listing

Publication Analysis

Top Keywords

radiomics
11
performance radiomics
8
radiomics multimodal
8
multimodal images
8
tumor
5
progress multimodal
4
multimodal imaging
4
imaging combination
4
combination subregion
4
based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!