Charge Transfer Reactions between Water Isotopologues and Kr ions.

ACS Phys Chem Au

Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom.

Published: May 2022

Astrochemical models often adopt capture theories to predict the behavior of experimentally unmeasured ion-molecule reactions. Here, reaction rate coefficients are reported for the charge transfer reactions of HO and DO molecules with cold, trapped Kr ions. Classical capture theory predictions are found to be in excellent agreement with the experimental findings. A crossing point identified between the reactant and product potential energy surfaces, constructed from high-level calculations, further supports a capture-driven mechanism of charge transfer. However, ion-molecule reactions do not always agree with predictions from capture theory models. The appropriateness of using capture theory-based models in the absence of detailed experimental or theoretical studies is discussed, alongside an analysis of why capture theory is appropriate for describing the likelihood of charge transfer between Kr and the two water isotopologues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136950PMC
http://dx.doi.org/10.1021/acsphyschemau.1c00042DOI Listing

Publication Analysis

Top Keywords

charge transfer
16
capture theory
12
transfer reactions
8
water isotopologues
8
ion-molecule reactions
8
capture
5
charge
4
reactions
4
reactions water
4
isotopologues ions
4

Similar Publications

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Surface Composition Impacts Selectivity of ZnTe Photocathodes in Photoelectrochemical CO Reduction Reaction.

ACS Energy Lett

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.

View Article and Find Full Text PDF

Loading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.

View Article and Find Full Text PDF

Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!