Background: Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored.
Methods: Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro.
Results: Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of β-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of β-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, β-catenin activation, and reduction in WT1 expression.
Conclusions: Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI.
Trial Registration: Not applicable. Video abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150347 | PMC |
http://dx.doi.org/10.1186/s12964-022-00884-6 | DOI Listing |
Cell Death Dis
January 2025
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Microglia are progressively activated by inflammation and exhibit phagocytic dysfunction in the pathogenesis of neurodegenerative diseases. Lipid-droplet-accumulating microglia were identified in the aging mouse and human brain; however, little is known about the formation and role of lipid droplets in microglial neuroinflammation of Alzheimer's disease (AD). Here, we report a striking buildup of lipid droplets accumulation in microglia in the 3xTg mouse brain.
View Article and Find Full Text PDFTissue Cell
January 2025
Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China. Electronic address:
Background: Colorectal cancer (CRC) is one of the aggressive malignant tumors. Studies have shown that glycolysis promotes the proliferation of colorectal cancer cells and that PYCR2 is involved in cancer progression by affecting cellular glycolysis. In addition, PYCR2 is upregulated in colorectal cancer cell lines and can affect cellular autophagy.
View Article and Find Full Text PDFJ Liver Cancer
January 2025
Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Department of Thoracic Surgery, Shaanxi Provincial Cancer Hospital Xi'an 710061, China.
The study investigated the effect of casticin on the proliferation of non-small cell lung cancer(NSCLC) H322 cells and explored its molecular mechanism. Firstly, the cell counting kit-8(CCK-8) assay, colony formation assay, and EdU assay were used to detect the effect of casticin on the proliferation capacity of H322 cells under different concentrations and treatment durations. Then, glucose uptake, lactate production, extracellular pH, and oxygen consumption of H322 cells were measured before and after casticin treatment to analyze its impact on glycolysis in NSCLC H322 cells.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!