Background: Disease-specific human induced pluripotent stem cells (hiPSCs) can be generated directly from individuals with known disease characteristics or alternatively be modified using genome editing approaches to introduce disease causing genetic mutations to study the biological response of those mutations. The genome editing procedure in hiPSCs is still inefficient, particularly when it comes to homology directed repair (HDR) of genetic mutations or targeted transgene insertion in the genome and single cell cloning of edited cells. In addition, genome editing processes also involve additional cellular stresses such as poor cell viability and genetic stability of hiPSCs. Therefore, efficient workflows are desired to increase genome editing application to hiPSC disease models and therapeutic applications.

Methods And Results: To this end, we demonstrate an efficient workflow for feeder-free single cell clone generation and expansion in both CRISPR-mediated knock-out (KO) and knock-in (KI) hiPSC lines. Using StemFlex medium and CloneR supplement in conjunction with Matrigel cell culture matrix, we show that cell viability and expansion during single-cell cloning in edited and unedited cells is significantly enhanced. Keeping all factors into account, we have successfully achieved hiPSC single-cell survival and cloning in both edited and unedited cells with rates as maximum as 70% in less than 2 weeks.

Conclusion: This simplified and efficient workflow will allow for a new level of sophistication in generating hiPSC-based disease models to promote rapid advancement in basic research and also the development of novel cellular therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07621-9DOI Listing

Publication Analysis

Top Keywords

genome editing
16
cloning edited
12
single-cell cloning
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
genetic mutations
8
single cell
8
cell viability
8
disease models
8

Similar Publications

Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening.

Int J Biol Macromol

January 2025

Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China. Electronic address:

Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Targeting EBV Episome for Anti-Cancer Therapy: Emerging Strategies and Challenges.

Viruses

January 2025

Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.

As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics.

View Article and Find Full Text PDF

Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection.

View Article and Find Full Text PDF

Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections.

Viruses

December 2024

INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France.

Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!