Modern sequencing technologies produce a single consensus sequence without distinguishing between homologous chromosomes. Haplotype phasing solves this limitation by identifying alleles on the maternal and paternal chromosomes. This information is critical for understanding gene expression models in genetic disease research. Furthermore, the haplotype phasing of three homologous chromosomes in trisomy cells is more complicated than that in disomy cells. In this study, we attempted the accurate and complete haplotype phasing of chromosome 21 in trisomy 21 cells. To separate homologs, we established three corrected disomy cell lines (ΔPaternal chromosome, ΔMaternal chromosome 1, and ΔMaternal chromosome 2) from trisomy 21 induced pluripotent stem cells by eliminating one chromosome 21 utilizing the Cre-loxP system. These cells were then whole-genome sequenced by a next-generation sequencer. By simply comparing the base information of the whole-genome sequence data at the same position between each corrected disomy cell line, we determined the base on the eliminated chromosome and performed phasing. We phased 51,596 single nucleotide polymorphisms (SNPs) on chromosome 21, randomly selected seven SNPs spanning the entire length of the chromosome, and confirmed that there was no contradiction by direct sequencing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510051 | PMC |
http://dx.doi.org/10.1038/s10038-022-01049-6 | DOI Listing |
bioRxiv
January 2025
Department of Computer Science, School of Computing and Data Science, University of Hong Kong, Hong Kong, China.
Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.
View Article and Find Full Text PDFStructural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.
View Article and Find Full Text PDFbioRxiv
December 2024
Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (~60X), NovaSeq (~30X), and linked-read sequencing (~28X).
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Faculty of Information Science and Technology, Hokkaido University, Kita-14, Nishi-9, Kita-ku, Sapporo, Hokkaido, Japan 060-0814.
The influence of long-term climatic changes such as glacial cycles on the history of living organisms has been a subject of research for decades, but the detailed population dynamics during the environmental fluctuations and their effects on genetic diversity and genetic load are not well understood on a genome-wide scale. The Japanese macaque (Macaca fuscata) is a unique primate adapted to the cold environments of the Japanese archipelago. Despite of the past intensive research for the Japanese macaque population genetics, the genetic background of Japanese macaques at the whole-genome level has been limited to a few individuals, and the comprehensive demographic history and genetic differentiation of Japanese macaques have been underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!