Population-based cancer screening programs such as mammography or colonscopy generally directed at all healthy individuals in a given age stratum. It has recently been proposed that cancer screening could be restricted to a high-risk subgroup based on polygenic risk scores (PRSs) using panels of single-nucleotide polymorphisms (SNPs). These PRSs were, however, generated to predict cancer incidence rather than cancer mortality and will not necessarily address overdiagnosis, a major problem associated with cancer screening programs. We develop a simple net-benefit framework for evaluating screening approaches that incorporates overdiagnosis. We use this methodology to demonstrate that if a PRS does not differentially discriminate between incident and lethal cancer, restricting screening to a subgroup with high scores will only improve screening outcomes in a small number of scenarios. In contrast, restricting screening to a subgroup defined as high-risk based on a marker that is more strongly predictive of mortality than incidence will often afford greater net benefit than screening all eligible individuals. If PRS-based cancer screening is to be effective, research needs to focus on identifying PRSs associated with cancer mortality, an unchartered and clinically-relevant area of research, with a much higher potential to improve screening outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151796PMC
http://dx.doi.org/10.1038/s41698-022-00280-wDOI Listing

Publication Analysis

Top Keywords

cancer screening
20
screening
11
cancer
9
polygenic risk
8
risk scores
8
mortality incidence
8
screening programs
8
cancer mortality
8
associated cancer
8
restricting screening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!