Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151768PMC
http://dx.doi.org/10.1038/s41467-022-30531-0DOI Listing

Publication Analysis

Top Keywords

rna editing
24
cell type-associated
12
cellular genetic
8
editing
8
editing variation
8
human brain
8
type-associated sites
8
cell types
8
rna
7
cell
7

Similar Publications

Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments.

View Article and Find Full Text PDF

Mitochondrial DNA Structure in .

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb).

View Article and Find Full Text PDF

Mitochondrial Genome Insights into Evolution and Gene Regulation in .

Int J Mol Sci

January 2025

College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China.

As a globally distributed perennial Gramineae, can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of using genomic data from the PacBio and BGI platforms. The mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively.

View Article and Find Full Text PDF

ADAR Therapeutics as a New Tool for Personalized Medicine.

Genes (Basel)

January 2025

Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.

In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.

View Article and Find Full Text PDF

The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies.

Genes (Basel)

January 2025

Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA.

The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!