Nitric oxide (NO) and ethylene are both important signaling molecules which participate in numerous plant development processes and environmental stress resistance. Here, we investigate whether and how NO interacts with ethylene during the development of endodermal barriers that have major consequences for the apoplastic uptake of cadmium (Cd) in the hyperaccumulator Sedum alfredii. In response to Cd, an increased NO accumulation, while a decrease in ethylene production was observed in the roots of S. alfredii. Exogenous supplementation of NO donor SNP (sodium nitroprusside) decreased the ethylene production in roots, while NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) had the opposite effect. The exogenous addition of NO affected the ethylene production through regulating the expression of genes related to ethylene synthesis. However, upon exogenous ethylene addition, roots retained their NO accumulation. The abovementioned results suggest that ethylene is downstream of the NO signaling pathway in S. alfredii. Regardless of Cd, addition of SNP promoted the deposition of endodermal barriers via regulating the genes related to Casparian strips deposition and suberization. Correlation analyses indicate that NO positively modifies the formation of endodermal barriers via the NO-ethylene signaling pathway, Cd-induced NO accumulation interferes with the synthesis of ethylene, leading to a deposition of endodermal barriers in S. alfredii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119530 | DOI Listing |
Dev Biol
January 2025
Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka 560065, India. Electronic address:
Plant Cell Environ
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.
The heterogeneity of soil salinity is a critical attribute of saline agricultural environments, particularly for the physiological adaptability of cotton (Gossypium hirsutum L.) plants. However, the mechanisms by which cotton plants acclimate to heterogenous salinity remain poorly understood.
View Article and Find Full Text PDFPlant Sci
December 2024
Department of Life Science, Sogang University, Seoul 04107, Republic of Korea. Electronic address:
Suberin is an extracellular hydrophobic polymer deposited in seed coats that acts as a barrier to regulate the movement of ions, water, and gases, and protects seeds against pathogens. However, the molecular mechanisms underlying suberin deposition in the seed coat remain unknown. In this study, the in planta role of ATP-binding cassette G23 (ABCG23) was investigated in the Arabidopsis seed coat.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai Animal Resources Center and Reproductive Regulation, Institute of Transplantation Medicine, Nankai University, Tianjin, 300350, China.
Totipotent cells can differentiate into three lineages: the epiblast, primitive endoderm, and trophectoderm. Naturally, only early fertilized embryos possess totipotency, and they lose this ability as they develop. The expansion of stem cell differentiation potential has been a hot topic in developmental biology for years, particularly with respect to the generation totipotent-like stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!