Cancer malignancies require the application of advanced strategies leading to the development of novel theranostic. Quite often drugs target a variety of receptors in the cell signaling cascades that could be explored to combat aggressive tumors. Herein, two receptors that are over-expressed during the diagnosis of breast cancer are used as the primary drug targets, inclusively Glycogen Synthase kinase -3 beta (GSK-3Β) and Inhibitor of nuclear factor kappa kinase-beta (IKK-β). Dual-targeting inhibitors pave the way for a challenging pathway in the treatment of aberrant tumor progression. The present study involves the observation of similarities in the structure of the receptors, along with the designing of novel therapeutics that act on them by molecular docking followed by a pharmacokinetic screening approach. A 3D QSAR modeling study is performed to approach the functionality of the bioactive conformer molecules. Additionally, Molecular Dynamic Simulation parameters are used for the validation of the drug complexes. Already available inhibitors are used as reference compounds and a library of analogs generated for these compounds from the PubChem database has been used for in silico designing of novel inhibitors. Molecular Docking and ADME analysis narrowed down the vast library of compounds to two specific classes of chemical compounds. Molecular Dynamic simulation studies used for the selection of the novel moieties showed significant superiority in their stability studies and binding trajectories resulted in two novel molecules A6 and B3 that could inhibit the kinase receptors. The current work involves computational designing of therapeutics targeting two major oncogenic proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2022.108225 | DOI Listing |
Insects
December 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
Due to the intensification of human activities, the ecosystems are being polluted by heavy metals. The pollution of heavy metals in agricultural systems has become a serious issue of global concern. This study detected the bioaccumulation of cadmium (Cd) in broad beans and aphids through continuous exposure to varying concentrations of Cd pollution (0, 3.
View Article and Find Full Text PDFInsects
December 2024
Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan.
In the present study, we investigated the possible correlation between insulin/ecdysone signaling and chilling-induced egg diapause termination in . Changes in () and () gene expression levels in chilled eggs (whose diapause had been terminated by chilling to 5 °C for 90 days) exhibited no significant increase after being transferred to 25 °C, which differed from both non-diapause eggs and HCl-treated eggs. We further compared the differential temporal expressions of (, -, and ), ( and ), and ( () and ()) as well as () genes between chilled eggs and eggs kept at 25 °C.
View Article and Find Full Text PDFBrain Sci
November 2024
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).
Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.
Cell Commun Signal
January 2025
Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.
View Article and Find Full Text PDFExp Mol Med
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!