Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron-sulfur (Fe-S) cluster assembly genes play important roles in plant growth and development. However, their biological function in fruit crops is still unknown, especially in strawberry. In this study, Fe depletion significantly inhibited the growth, photosynthesis, Fe accumulation level and the enzyme activity of Fe-S proteins of aconitase (ACO), nitrate reductase (NiR) and succinate dehydrogenase (SDH) in strawberry seedlings. In addition, 40 Fe-S cluster assembly genes were isolated from strawberry, which were significantly varied among different tissues/organs and were differentially responded to Fe depletion in different tissue parts. In total, 79% of the responsive genes were up-regulated in shoots, while 65% of the responsive genes were down-regulated in roots under Fe depletion. Moreover, the expression level of ISU1 was the highest in strawberry tissues, especially in young fruits, and over-expression of ISU1 gene in Arabidopsis significantly enhanced the Fe accumulation, leaf total chlorophyll, ACO and SDH activities in transgenic lines, and strengthened plant tolerance to Fe depletion. This study provides gene resources to elucidate the molecular mechanisms of Fe-S cluster assembly in strawberry, and lays a theoretical foundation to reveal Fe nutrition and metabolism in Rosaceae fruits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2022.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!