Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology.

Phytomedicine

Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, Henan Province, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China. Electronic address:

Published: July 2022

Background: Jinshui Huanxian formula (JHF), a traditional Chinese medicine (TCM), has been demonstrated to attenuate idiopathic pulmonary fibrosis (IPF). The active compounds and underlying mechanisms of JHF, however, are unclear.

Purpose: The purpose of This study was to aimed to identify the active compounds and pharmacological mechanism of JHF by integrating serum pharmacochemistry with a network pharmacology strategy.

Methods: JHF was orally administered to a rat model with bleomycin (BLM)-induced pulmonary fibrosis (PF). The pharmacodynamic effects and compounds present in the serum were identified. The targets and biological mechanisms of these compounds were revealed using network analysis and validated using in vitro experiments.

Results: JHF could significantly ameliorate BLM-induced PF by preventing extracellular matrix collagen deposition. Twenty-seven compounds that were found to be enriched in the serum samples collected 1 h after oral administration with JHF were identified as the candidate active compounds, and their 423 potential targets were identified as JHF targets. primarily related to the advanced glycation and products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway, phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or AKT) signaling pathway, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, etc. The 423 targets, 1145 IPF-related genes and their overlapped genes were applied to analyze, respectively. The results showed that these genes were primarily related to the advanced glycation end-products-receptor for advanced glycation end-products (AGE-RAGE) signaling pathway, lipid and atherosclerosis pathology, phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or AKT) signaling pathway, and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance. Furthermore, the affinity between serum JHF compounds and the main proteins in the above important pathways was investigated through molecular docking. As a result, Molecular docking analysis showed that, tangeretin, isosinensetin, and peimine were found to could bind to EGFR and AKT, and their inhibitory effect on EGFR and AKT were validated in fibroblast cell induced by transforming growth factor (TGF)TGF-β. The results indicated that suppression of fibroblast activation by inhibiting the EGFR/PI3K/AKT signaling pathway might be an important mechanism of JHF may to treat PF.

Conclusion: JHF may suppress fibroblast activation by inhibiting the EGFR/PI3K/AKT signaling pathway to ameliorate PF. Tangeretin, isosinensetin, and peimine may be the active compounds in JHF involved in the treatment of that have therapeutic effects on IPF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154177DOI Listing

Publication Analysis

Top Keywords

signaling pathway
24
active compounds
20
advanced glycation
16
pulmonary fibrosis
12
growth factor
12
jhf
11
compounds
9
jinshui huanxian
8
huanxian formula
8
integrating serum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!