Structural snapshots of the mechanism of TRPV2 channel activation by small-molecule agonists.

Cell Calcium

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Electronic address:

Published: July 2022

Transient receptor potential (TRP) channels are polymodal sensors that play critical roles in various physiological processes in living organisms. These cation-permeable channels respond to a variety of physical and chemical stimuli, including cold and hot temperatures, acidic pH, and mechanical stress, often determining a sensory frontier of defense against hostile environments. Vanilloid (V) subfamily is the most studied category of TRP channels that includes six closely related members: highly calcium-selective TRPV5-6 and non-selective TRPV1-4. A remarkable feature of TRPV1-4 is their ability to sense heat, which makes them temperature-sensitive TRP channels or thermo-TRPs. TRPV channels are associated with a multitude of human diseases, including cancers, chronic pain, cardiovascular, neurological and nociceptive disorders. Despite the great clinical interest, pharmacology of TRPV channels remains largely undeveloped because of insufficient knowledge about the mechanisms of their regulation. For instance, activation of TRPV channels by small molecules or heat remains poorly understood. Numerous identified TRPV channel agonists, while effective in physiological experiments, appear limited in their ability to act in the conditions of structural biology experiments. In this regard, the recent study by Pumroy et al. [1] makes a significant contribution towards our understanding of TRPV2 structural dynamics that leads to opening of this channel in physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2022.102607DOI Listing

Publication Analysis

Top Keywords

trp channels
12
trpv channels
12
channels
7
structural snapshots
4
snapshots mechanism
4
mechanism trpv2
4
trpv2 channel
4
channel activation
4
activation small-molecule
4
small-molecule agonists
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!