Background: Instrumented measurement of spatiotemporal parameters during walking can provide valuable information on an individual's overall function and health. Efficient, inexpensive, and accurate measurement of overground walking spatiotemporal parameters would be a critical component of providing point-of-care assessments of gait function, concussion recovery, fall-risk, and cognitive decline. Depth cameras combined with skeleton pose tracking algorithms, such as the Microsoft Kinect with body tracking software, have been used to measure walking spatiotemporal parameters. However, the ability of the latest generation Microsoft Kinect sensor, the Azure Kinect, to accurately measure overground walking spatiotemporal parameters has not been evaluated in the literature.
Research Question: The purpose of this work was to compare overground walking spatiotemporal parameters measurements from a 12 camera Vicon optical motion capture system to measurements of a single Azure Kinect with body tracking SDK (software development kit).
Methods: Spatiotemporal parameters of overground walking were simultaneously collected on twenty young healthy participants. Stride length, stride time, step length and step width were derived from ankle joint center locations and measurements from the two instruments were compared using descriptive statistics, scatter plots, Pearson correlation analyses, and Bland-Altman analyses.
Results: Pearson correlation coefficients were greater than 0.87 for all spatiotemporal parameters with most parameters demonstrating very strong (> 0.9) agreement. The mean of the differences for stride length between measurements was 35.6 mm for the left limb and 39.1 mm for the right limb, both of which are less than 3% of average stride length. Mean of the differences for step width and stride time were less than 2% and 1% of their averages respectively.
Significance: A single Microsoft Azure Kinect with body tracking SDK can provide clinically relevant measurement of walking spatiotemporal parameters, providing accessible and objective measurements that can improve clinical decision making across a variety of patient populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2022.05.021 | DOI Listing |
Ann Biomed Eng
December 2024
Department of Mechanical Engineering, The Biorobotics and Biomechanics Lab, University of Maine, 168 College Ave, Orono, ME, 04469, USA.
Purpose: Current gait rehabilitation protocols for older adults typically attempt to effect changes in leg movements, while the role of arm movements is often ignored despite evidence of the neurological coupling of the upper and lower extremities. In the present work, we examine the effectiveness of a novel wearable haptic cueing system that targets arm swing to improve various gait parameters in older adults.
Methods: Twenty participants ( years) were recruited to analyze their gait during normal and fast walking without haptic cueing.
Sports (Basel)
December 2024
Sports Training Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain.
This study evaluated the effects of advanced footwear technology (AFT) spikes on running performance measures, spatiotemporal variables, and perceptive parameters on different surfaces (track and grass). Twenty-seven male trained runners were recruited for this study. In Experiment 1, participants performed 12 × 200 m at a self-perceived 3000 m running pace with a recovery of 5 min.
View Article and Find Full Text PDFMethods Protoc
December 2024
Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), 75012 Paris, France.
The accurate measurement of spatiotemporal parameters, such as step length and step frequency, is crucial for analyzing running and sprinting performance. Traditional methods like video analysis and force platforms are either time consuming or limited in scope, prompting the need for more efficient technologies. This study evaluates the effectiveness of a commercial Global Positioning System (GPS) unit integrated with an Inertial Measurement Unit (IMU) in capturing these parameters during sprints at varying velocities.
View Article and Find Full Text PDFJ Mov Disord
December 2024
Graduate School of Health Sciences, Kio University, Nara, Japan.
Objective: Camptocormia has been considered to contribute to vertical gait instability and, at times, may also lead to forward instability in experimental settings in Parkinson's disease (PD). However, these aspects, along with compensatory mechanisms, remain largely unexplored. This study comprehensively investigated gait instability and compensatory strategies in PD patients with camptocormia (PD+CC).
View Article and Find Full Text PDFPhys Med
December 2024
Division of Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Purpose: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.
Methods: An established reaction-diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!