Proximity sensitive detection of microRNAs using electrochemical impedance spectroscopy biosensors.

Biosens Bioelectron

Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. Electronic address:

Published: September 2022

This study presents a new strategy and level of mechanistic understanding for ultrasensitive detection of short, non-coding RNAs without target amplification or chemical modification using electrochemical biosensors. Electrochemical impedance spectroscopy (EIS) has been used for probe target interaction detection because of its high utility for sensitive and label-free measurements of the nucleic acid targets as a result of hybridisation. EIS measurements of different probe target combinations in a range of spatial orientations and sequence overlaps showed that bringing the target overhangs closer to the nanometer proximity of the electrode surface improved the EIS signal significantly. Systematic investigations using different lengths of overhangs towards the electrode surface revealed proportionally higher EIS signals with increasing lengths of the overhangs. Our observations could be explained using the Poisson-Boltzmann and Gouy-Chapman model and followed our experimental modelling. In conclusion, the optimized arrangements of our EIS biosensor system enabled us to detect microRNA-122, a known biomarker for liver injury, as well as three common isoforms to a 1 nM (equivalent to 80 fmole) detection limit. This will enable us to develop solutions for the detection of this important blood biomarker at point of care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114404DOI Listing

Publication Analysis

Top Keywords

electrochemical impedance
8
impedance spectroscopy
8
probe target
8
electrode surface
8
lengths overhangs
8
detection
5
eis
5
proximity sensitive
4
sensitive detection
4
detection micrornas
4

Similar Publications

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Mechanical stress is one of the factors influencing the initiation of pitting corrosion and deterioration of the protective properties of the passive layer on stainless steel. The tests carried out on AISI 304L stainless steel showed that, in the 3.5% NaCl environment for samples loaded in the elastic and plastic range, no pitting corrosion initiation was observed.

View Article and Find Full Text PDF

The objective of this study is to investigate the impact of different pH values and chloropropene flow rates on the erosion-corrosion behavior of 316L stainless steel. The influence of various factors on the surface morphology was analyzed using scanning electron microscopy, X-ray powder diffractometry, and electrochemical impedance spectroscopy techniques. The results revealed that at a pH value of 3.

View Article and Find Full Text PDF

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF

This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!