A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of human gut bacteria in arsenic biosorption and biotransformation. | LitMetric

Role of human gut bacteria in arsenic biosorption and biotransformation.

Environ Int

College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Published: July 2022

There is growing evidence that human gut microbiota can metabolize arsenic (As); however, which bacteria play roles in this metabolism is unclear. In this study, we measured the abilities of 21 human gut bacteria strains from diverse clades to adsorb and transform As using in vitro method with the aim of determining which bacteria play a role in As metabolism. Seven strains showed high biosorption of As, ranging from 20.1 to 29.8%, which was attributed to functional groups on the bacterial surfaces, such as hydroxyl, amino, and carboxyl groups. Moreover, six of these seven strains were versatile, as they also had roles in reducing As(V) to As(III), which is mainly regulated by the arsC gene. Escherichia coli had the strongest tolerance to As and the highest reducing ability, with a value of 71.04-73.13 µM As/h. This study reveals that gut bacteria play essential roles in As biosorption and biotransformation, and provides a better understanding of which strains are involved, which has implications for the regulation of As toxicity-based gut bacteria and provides basic data for regulating arsenic to human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107314DOI Listing

Publication Analysis

Top Keywords

gut bacteria
16
human gut
12
bacteria play
12
biosorption biotransformation
8
bacteria
6
gut
5
role human
4
bacteria arsenic
4
arsenic biosorption
4
biotransformation growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!