Controlled release of low-molecular weight, polymer-free corticosteroid coatings suppresses fibrotic encapsulation of implanted medical devices.

Biomaterials

Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada. Electronic address:

Published: July 2022

Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants. The dimer coatings are >75% dexamethasone by mass and directly processable into conformal coatings using conventional solvent-based techniques, such as casting or spray coating without added polymers or binding agents. In vitro, surface erosion of the coating, and subsequent hydrolysis, provide controlled release of free dexamethasone. In a rat subcutaneous implantation model, the resulting slow and sustained release profile of dexamethasone is effective at reducing the number and activation of pro-fibrotic macrophages both acutely and at chronic time points. Consequently, fibroblast activation, collagen deposition and fibrotic encapsulation are suppressed at least 45 days post-implantation. Thus, our approach to protect implants from host rejection is advantageous over polymeric drug delivery systems, which typically have low drug loading capacity (<30%), initial burst release profiles, and unpredictable release kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121586DOI Listing

Publication Analysis

Top Keywords

fibrotic encapsulation
12
foreign body
12
controlled release
8
implanted medical
8
medical devices
8
body reactions
8
suppress foreign
8
drug delivery
8
release low-molecular
4
low-molecular weight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!