With the increasing importance of nanoconfined water in various heterostructures, it is quite essential to clarify the influence of nanoconfinement on the unique properties of water molecules in the pivotal heterojunction. In this work, we reported a series of classical molecular dynamics (MD) simulations to explore nanoconfined water in the subnanometer-sized and nanometer-sized heterostructures by adjusting one-dimensional (1-D) carbon nanotubes with different diameters and two-dimensional (2-D) graphene sheets with different interlayer distances. Our simulation results demonstrated that water molecules in the 1-D/2-D heterojunction show an obvious structural rearrangement associated with the remarkable breaking and formation of hydrogen bonds (HBs), and such rearrangements in the subnanometer-sized systems are much more pronounced than those in the nanometer-sized ones. When water molecules in the 1-D/2-D heterojunctions migrate from 2-D to 1-D confinements, the ordered multi-layer structure in the 2-D confinement are completely destroyed and then transform into different circular HB networks near the nanotube orifice for better connecting to the single-file or helical HB network in the 1-D nanotubes. Furthermore, water molecules in the 1-D/2-D heterojunctions can form stronger HBs with those water molecules further away from the 1-D confinement, leading to an asymmetrical orientational distribution near the orifice. More importantly, our comparison results revealed that the 1-D confinement plays a more important role than the 2-D confinement in determining both the structures and dynamics of water molecules in the 1-D/2-D heterojunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c00825 | DOI Listing |
Microb Pathog
January 2025
Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:
Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:
Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.
View Article and Find Full Text PDFJ Mol Model
January 2025
Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco.
Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!