Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiochromic film is a good dosimeter choice for patient QA for complex treatment techniques because of its near tissue equivalency, high spatial resolution and established method of use. Commercial scanners are typically used for film dosimetry, with Epson scanners being the most common. Radiochromic film dosimetry is not straightforward having some well-defined problems which must be considered, one of the main ones being the Lateral Response Artefact (LRA) effect. Previous studies showed that the contributing factors to LRA are from the structure of the active ingredients of the film and the components and construction of the flatbed scanner. This study investigated the effect of the scanner lens on the LRA effect, as part of a wider investigation of scanner design effects and uncertainties. Gafchromic EBT3 films were irradiated with 40 × 40 cm field size 6 MV beams. Films were analysed using images captured by a Canon 7D camera utilising 18 mm, 50 mm and 100 mm focal length lenses compared to images scanned with a conventional Epson V700 scanner. The magnitude of the LRA was observed to be dependent on the focal length of the lens used to image the film. A substantial reduction in LRA was seen with the use of the 50 mm and 100 mm lenses, by factors of 3-5 for the 50 mm lens and 4-30 for the 100 mm lens compared to conventional desktop scanner techniques. This is expected to be from the longer focal length camera lens system being able to collect more light from distant areas compared to the scanner-based system. This provides an opportunity to design film dosimetry systems that minimise this artefact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448687 | PMC |
http://dx.doi.org/10.1007/s13246-022-01136-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!