Flavonoid represents a significant class of secondary metabolites in Pu-erh tea with benefits to human health. For a rapid and complete discovery of such compounds, we established a data mining workflow that integrates software MS-DIAL, MS-FINDER, and molecular networking analysis. As a result, 181 flavonoids were tentatively annotated including 22 first found in Pu-erh tea, and two of them were potentially new molecules. The dynamic alteration of these flavonoids during Pu-erh fermentation was further investigated. They all showed a trend of first increasing and then decreasing. Moreover, statistical analysis showed that the first to third pile turnings of the fermentation process had a greater impact on the changes of flavonoids. Partial metabolic pathways were proposed. This study provides a quick and automatic strategy for flavonoid profiling. The temporal dimension of flavonoids during fermentation may serve as a theoretical basis for Pu-erh tea manufacturing technology and study on substance foundation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c01595 | DOI Listing |
PLoS One
January 2025
College of Tea Science, Yunnan Agricultural University, Kunming, China.
The quality and safety of tea food production is of paramount importance. In traditional processing techniques, there is a risk of small foreign objects being mixed into Pu-erh sun-dried green tea, which directly affects the quality and safety of the food. To rapidly detect and accurately identify these small foreign objects in Pu-erh sun-dried green tea, this study proposes an improved YOLOv8 network model for foreign object detection.
View Article and Find Full Text PDFMolecules
November 2024
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with isolated from Pu-erh tea to enhance the fermentation process.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:
Most reported sensor arrays for teas were based on the sensing of phenolic hydroxyl group on tea polyphenols. In this work, a novel sensor array was developed based on the simultaneous sensing of phenols and ketones, for the enhanced discrimination of tea polyphenols with/without ketone, and then for the efficient discrimination of raw Pu-erh teas from different origins and the counterfeit, combined with machine learning. This sensor array is consisting of four channels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China. Electronic address:
Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.
View Article and Find Full Text PDFJ Food Sci
December 2024
Institute of Quality Standards & Testing Technique, Yunnan Academy of Agricultural Science, Kunming, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!