Metal-catalysed C-H bond activation and borylation.

Chem Soc Rev

Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.

Published: June 2022

AI Article Synopsis

  • The direct borylation of hydrocarbons via C-H bond activation has gained popularity due to the versatility of organoboron compounds, though controlling site-selectivity has been a key challenge.
  • Significant progress has been made in improving selectivity for both proximal and distal C-H bond borylation through innovative methodologies, including new catalytic systems and modifications to directing groups.
  • This review article outlines various approaches, advancements in aliphatic C(sp)-H and enantioselective borylations, and highlights the applications of C-H borylation in natural product synthesis, therapeutics, and materials chemistry since 2014.

Article Abstract

Transition metal-catalysed direct borylation of hydrocarbons C-H bond activation has received a remarkable level of attention as a popular reaction in the synthesis of organoboron compounds owing to their synthetic versatility. While controlling the site-selectivity was one of the most challenging issues in these C-H borylation reactions, enormous efforts of several research groups proved instrumental in dealing with selectivity issues that presently reached an impressive level for both proximal and distal C-H bond borylation reactions. For example, in the case of C-H bond borylation reactions, innovative methodologies have been developed either by the modification of the directing groups attached with the substrates or by creating new catalytic systems the design of new ligand frameworks. Whereas and selective C-H borylations remained a formidable challenge, numerous innovative concepts have been developed within a very short period of time by the development of new catalytic systems with the employment of various noncovalent interactions. Moreover, significant advancements have occurred for aliphatic C(sp)-H borylations as well as enantioselective borylations. In this review article, we aim to discuss and summarize the different approaches and findings related to the development of directed proximal , distal /, aliphatic (racemic and enantioselective) borylation reactions since 2014. Additionally, considering the C-H borylation reaction as one of the most important mainstream reactions, various applications of this C-H borylation reaction toward the synthesis of natural products, therapeutics, and applications in materials chemistry will be summarized in the last part of this review article.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cs01012cDOI Listing

Publication Analysis

Top Keywords

c-h bond
16
borylation reactions
16
c-h borylation
12
bond activation
8
borylation
8
reaction synthesis
8
proximal distal
8
bond borylation
8
catalytic systems
8
review article
8

Similar Publications

The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.

View Article and Find Full Text PDF

Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

C-C bond coupling with sp C-H bond via active intermediates from CO hydrogenation.

Nat Commun

January 2025

Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.

Article Synopsis
  • CO hydrogenation has been identified as a more sustainable and efficient alternative to methanol in the side-chain alkylation of 4-methylpyridine (MEPY) using a ZnZrO/CsX tandem catalyst, achieving a conversion rate of 19.6%.
  • This new method results in 82% selectivity for 4-ethylpyridine (ETPY) and demonstrates 6.5 times greater activity compared to traditional methanol-mediated processes.
  • The success of this catalytic process is attributed to the dual functionality of the catalyst components, facilitating both CO hydrogenation and the activation of C-H and C-C bonds, with CHO* species acting as the crucial intermediate.
View Article and Find Full Text PDF

Pt/IrO enables selective electrochemical C-H chlorination at high current.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.

Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!