Excessive use of fossil fuels has accelerated climate change and global warming necessitates the need for renewable energy sources that have a lower environmental impact. In the recent decade, lignocellulosic biomass has become a prominent alternative to renewable energy resources for the production of bioenergy. The pretreatment procedure is considered a pivotal step for transforming biomass into value-added products such as sugars, biofuels, etc. Therefore, the present work aims to study the effect of different pretreatment approaches on rice husk with acids (HSO and HCl), alkalis (NaOH and KOH), and organic solvents (ethanol and methanol) utilizing different concentrations like (2, 4 and 6% in case of acids), (2,4 and 6% for alkalis) and (50% and 70% for organic solvents) with different residence time (1, 3, 6, and 24 h). The most effective results obtained from the aforementioned steps were further adopted for enzymatic hydrolysis. Further, the changes in structural properties of biomass were assessed in relation to the pretreatment process employing scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared (FTIR) analyses. This paper also highlights the of alkali pretreatment. Additionally, the operational targets for the process were identified by using a modeling software-SuperPro Designer. Results obtained from the study showed a maximum yield of reducing sugar i.e., 1.906 ± 0.2 mg/ml (4% NaOH with 6 h of incubation). This study demonstrates that 4% NaOH pretreatment effectively disintegrates the biomass and yields high sugar recovery which can be used further for the production of biofuels and value-added products.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2022.2078982DOI Listing

Publication Analysis

Top Keywords

rice husk
8
renewable energy
8
value-added products
8
organic solvents
8
pretreatment
6
optimization alkali
4
alkali acid
4
acid organic
4
organic solvent
4
solvent pretreatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!