Rapid Quantification of Glutamate Dehydrogenase and Toxin B (TcdB) with a NanoBiT Split-Luciferase Assay.

Anal Chem

School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom.

Published: June 2022

infection (CDI) is a leading healthcare-associated infection with a high morbidity and mortality and is a financial burden. No current standalone point-of-care test (POCT) is sufficient for the identification of true CDI over a disease-free carriage of , so one is urgently required to ensure timely, appropriate treatment. Here, two types of binding proteins, Affimers and nanobodies, targeting two biomarkers, glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays were optimized and their performance controlling parameters were examined. The 44 fM limit of detection (LoD), 4-5 log range and 1300-fold signal gain of the TcdB assay in buffer is the best observed for a NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result (32 min) are similar to a current, commercial lateral flow POCT, but the NanoBit assay has no wash steps, detects clinically relevant TcdB over TcdA, and is quantitative. Development of the assay into a POCT may drive sensitivity further and offer an urgently needed ultrasensitive TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT with Binding Proteins) system offers advantages over NanoBiT assays with antibodies as binding elements in terms of ease of production and assay performance. We expect this methodology and approach to be generally applicable to other biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201815PMC
http://dx.doi.org/10.1021/acs.analchem.1c05206DOI Listing

Publication Analysis

Top Keywords

glutamate dehydrogenase
8
toxin tcdb
8
true cdi
8
binding proteins
8
tcdb assay
8
nanobit assay
8
assay
7
tcdb
6
nanobit
6
rapid quantification
4

Similar Publications

Danger Biomarkers in Perfusates From Fatty Liver Grafts Subjected to Cold Storage Preservation in Different Preservation Solutions.

Transplant Proc

January 2025

Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain; Steatohepatitis and Liver Transplant, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER ehd, Barcelona, Spain.

Static cold storage remains the traditional standard for liver graft preservation prior to transplantation in both clinical and experimental settings. The use of polyethylene glycol 35 solutions, such as Institut Georges Lopez-2 (IGL2) preservation solution, for protecting against mitochondrial damage during cold static preservation necessitates combination with hypothermic oxygenated perfusion to enhance liver graft performance. This study presents a preliminary comparative evaluation of "danger signals" indicating hepatocellular injury (transaminases, lactate content), mitochondrial damage (glutamate dehydrogenase release), and cytokine release in liver perfusates from suboptimal grafts (fatty livers) subjected to 24-hour cold storage.

View Article and Find Full Text PDF

[Clostridioides difficile infection diagnosis].

Ann Biol Clin (Paris)

January 2025

Laboratoire Clostridioides difficile associé au Centre National de Référence des bactéries anaérobies et du botulisme, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, 184 rue du Faubourg Saint-Antoine, 75012 Paris France, UMR-S 1139 3PHM, Université Paris Cité, Paris, France.

Clostridioides difficile is a Gram-positive, spore-forming anaerobic enteropathogen responsible for a wide spectrum of clinical diseases ranging from mild diarrhoea to pseudomembranous colitis. It is the first cause of healthcare-associated diarrhoeas, but community-associated Clostridioides difficile infections (CDI) are increasingly reported in patients without the common risk factors (age > 65 years, previous antibiotic treatment). The main C.

View Article and Find Full Text PDF

Glutamic-pyruvic transaminase 1 deficiency-mediated metabolic reprogramming facilitates colorectal adenoma-carcinoma progression.

Sci Transl Med

January 2025

Department of Colorectal Surgery (General Surgery), Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.

The tumorigenesis of colorectal cancer (CRC) often follows the normal-adenoma-carcinoma (N-A-C) sequence. However, the molecular mechanisms underlying colorectal adenoma carcinogenesis remain largely unknown. Here, we analyzed transcriptomic profile changes in normal, advanced adenoma, and carcinoma tissues from patients with CRC, revealing that glutamic-pyruvic transaminase 1 () in colorectal tissues was down-regulated during the N-A-C process and correlated with poor CRC prognosis.

View Article and Find Full Text PDF

The de novo synthesis of GABA and its gene regulatory function control hepatocellular carcinoma metastasis.

Dev Cell

December 2024

State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China. Electronic address:

The neurotransmitter gamma-aminobutyric acid (GABA) has been thought to be involved in the development of some types of cancer. Yet, the de novo synthesis of GABA and how it functions in hepatocellular carcinoma (HCC) remain unclear. Here, we report that SLC6A12 acts as a transporter of GABA, and that aldehyde dehydrogenase 9 family member A1 (ALDH9A1), not glutamate decarboxylase 1 (GAD1), generates GABA in human HCC.

View Article and Find Full Text PDF

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!