A paradoxical finding from genome-wide association studies (GWAS) in plants is that variation in metabolite profiles typically maps to a small number of loci, despite the complexity of underlying biosynthetic pathways. This discrepancy may partially arise from limitations presented by geographically diverse mapping panels. Properties of metabolic pathways that impede GWAS by diluting the additive effect of a causal variant, such as allelic and genetic heterogeneity and epistasis, would be expected to increase in severity with the geographical range of the mapping panel. We hypothesized that a population from a single locality would reveal an expanded set of associated loci. We tested this in a French population (less than 1 km transect) by profiling and conducting GWAS for glucosinolates, a suite of defensive metabolites that have been studied in depth through functional and genetic mapping approaches. For two distinct classes of glucosinolates, we discovered more associations at biosynthetic loci than the previous GWAS with continental-scale mapping panels. Candidate genes underlying novel associations were supported by concordance between their observed effects in the TOU-A population and previous functional genetic and biochemical characterization. Local populations complement geographically diverse mapping panels to reveal a more complete genetic architecture for metabolic traits. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149790PMC
http://dx.doi.org/10.1098/rstb.2020.0512DOI Listing

Publication Analysis

Top Keywords

mapping panels
12
genome-wide association
8
genetic architecture
8
geographically diverse
8
diverse mapping
8
functional genetic
8
mapping
6
genetic
5
association mapping
4
mapping local
4

Similar Publications

Background: Single-cell technologies have revealed significant microglial cell heterogeneity across the human brain in both health and disease. However, the integration of high-plex protein and spatial information in single-cell approaches constitutes a challenge essential for advancing our cell biology comprehension in the neuroscience field.

Method: In the present study, we employed co-detection by indexing (CODEX), a protein multiplexed imaging technology, for the first time to unravel the association between different microglial populations and pathological features of Alzheimer's disease (AD) in the human brain.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Background: Hispanic/Latino populations are underrepresented in Alzheimer Disease (AD) genetic studies. The Puerto Rican (PR) population, a three-way admixed (European, African, and Amerindian) population is the second-largest Hispanic group in the continental US. We performed a genome-wide association study (GWAS) in the PR population to identify novel AD susceptibility loci and characterize known AD genetic risk loci.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Background: Classical genome-wide association studies (GWAS) of Alzheimer's disease (AD), which successfully identified over 75 risk loci to date, are limited to the content of the imputation panels that typically do not cover all types of genetic variation, e.g., tandem repeats encompassing >55% of human genome.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Background: To gain a deeper understanding of underlying molecular mechanisms in genomic regions associated with Alzheimer's disease (AD), the National Institute on Aging (NIA) launched the Alzheimer's Disease Sequencing Project (ADSP) Functional Genomics Consortium (FunGen-AD) in 2021.

Method: The first effort of this collaboration, coordinated by the NIA Genetics of Alzheimer's Disease Data Storage Site (NIAGADS), aggregated functional genomics (FG) data from 5 cohorts, including ∼3,000 samples of European (EA) and African ancestries (AA). We used this data to map Quantitative Trait Loci (xQTL) on AD-specific human tissues and cells, providing insights into how non-coding genetic variants contribute to AD risk.

View Article and Find Full Text PDF

Background: Pain management after childbirth is widely variable, increasing risk of untreated pain, opioid harms, and inequitable experiences of care. The Creating Optimal Pain Management FOR Tailoring Care (COMFORT) clinical practice guideline (CPG) seeks to promote evidence-based, equitable acute peripartum pain management in the United States. We aimed to identify contextual conditions (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!