In China there are approximately 100 pig breeds, which show great diversity in their appearance. However, information on genome selection signatures, such as spine curvature, is scarce. Therefore, we used the fixation index (F ) and cross-population extended haplotype homozygosity (XPEHH) methods to explore the genome selection signatures of spine curvature in six breeds of Chinese indigenous pig. We identified 396 and 389 single nucleotide polymorphisms using the F and XPEHH methods, respectively. We detected 19 selection signatures and 28 genes located in the selected regions. Five candidate genes (MAP3K7, CUX1, GRIN2B, ALPL and MACF1) were identified in the selection signatures. Additionally, 719 high-frequency runs of homozygosity regions, 17 unique runs of homozygosity regions, 78 genes and 27 pathways were identified in the runs of homozygosity analysis. The TGF-beta signaling pathway and eight genes related to the spine formation, spine defects and intervertebral disk degeneration were identified, comprising ACVR1, FMOD, ITGA4, MAPK8, PDGF, RPL3, SULF1 and UBE2D1. In summary, we identified 13 candidate genes related to spine curvature in Chinese indigenous pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/age.13224DOI Listing

Publication Analysis

Top Keywords

selection signatures
20
runs homozygosity
16
spine curvature
16
chinese indigenous
12
curvature chinese
8
indigenous pigs
8
genome selection
8
signatures spine
8
xpehh methods
8
candidate genes
8

Similar Publications

Aim: Pre-injury frailty has been investigated as a tool to predict outcomes of older trauma patients. Using artificial intelligence principles of machine learning, we aimed to identify a "signature" (combination of clinical variables) that could predict which older adults are at risk of fall-related hospital admission. We hypothesized that frailty, measured using the 5-item modified Frailty Index, could be utilized in combination with other factors as a predictor of admission for fall-related injuries.

View Article and Find Full Text PDF

Informing etiological heterogeneity of mild cognitive impairment and risk for progression to dementia with plasma p-tau217.

J Prev Alzheimers Dis

January 2025

1Florida Alzheimer's Disease Research Center, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.

Background: Mild cognitive impairment (MCI) is a clinical diagnosis representing early symptom changes with preserved functional independence. There are multiple potential etiologies of MCI. While often presumed to be related to Alzheimer's disease (AD), other neurodegenerative and non-neurodegenerative causes are common.

View Article and Find Full Text PDF

Background: The efficacy of immune checkpoint inhibitors (ICIs) depends on the tumor immune microenvironment (TIME), with a preference for a T cell-inflamed TIME. However, challenges in tissue-based assessments via biopsies have triggered the exploration of non-invasive alternatives, such as radiomics, to comprehensively evaluate TIME across diverse cancers. To address these challenges, we develop an ICI response signature by integrating radiomics with T cell-inflamed gene-expression profiles.

View Article and Find Full Text PDF

Purpose: Anti-programmed cell death 1 (PD1) is the first-choice treatment in patients with advanced cutaneous squamous cell carcinoma (cSCC), when curative options are unavailable. However, reliable biomarkers for patient selection are still lacking.

Experimental Design: In this translational study, clinical annotations, tissue and liquid biopsies were acquired to investigate the association between sustained objective responses and transcriptional profiles, immune cell dynamics in tumor tissue and peripheral blood samples, as well as circulating cytokine levels.

View Article and Find Full Text PDF

Developing and experimental validating a T cell senescence-related gene signature to predict prognosis and immunotherapeutic sensitivity in non-small cell lung cancer.

Gene

January 2025

Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350011 Fujian Province, PR China. Electronic address:

Background: T cell senescence affects non-small cell lung cancer (NSCLC) by compromising the anti-tumor immune response. However, the prognostic significance of T cell senescence-related genes in NSCLC remains unclear.

Methods: The scRNA-seq data from normal lung and NSCLC tissues, along with co-incubation experiments involving NSCLC cells and T cells, were utilized to identify T cell senescence characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!