Heat stroke (HS) is a severe condition characterized by increased morbidity and high mortality. Acute liver injury (ALI) is a well-documented complication of HS. The tumor suppressor p53 plays an important role in regulation of mitochondrial integrity and mitophagy in several forms of ALI. However, the role of p53-regulated mitophagy in HS-ALI remains unclear. In our study, we discovered the dynamic changes of mitophagy in hepatocytes and demonstrated the protective effects of mitophagy activation on HS-ALI. Pretreatment with 3-MA or Mdivi-1 significantly exacerbated ALI by inhibiting mitophagy in HS-ALI mice. Consistent with the animal HS-ALI model results, silencing Parkin aggravated mitochondrial damage and apoptosis by inhibiting mitophagy in HS-treated normal human liver cell line (LO2 cells). Moreover, we described an increase in the translocation of p53 from the nucleus to the cytoplasm, and cytosolic p53 binds to Parkin in LO2 cells following HS. p53 overexpression using a specific adenovirus or Tenovin-6 exacerbated HS-ALI through Parkin-dependent mitophagy both and , whereas inhibition of p53 using siRNA or PFT-α effectively reversed this process. Our results demonstrate that cytosolic p53 binds to Parkin and inhibits mitophagy by preventing Parkin's translocation from the cytosol to the mitochondria, which decreases mitophagy activation and leads to hepatocyte apoptosis in HS-ALI. Overall, pharmacologic induction of mitophagy by inhibiting p53 may be a promising therapeutic approach for HS-ALI treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139682 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.859231 | DOI Listing |
Cancer Discov
January 2025
Princess Margaret Cancer Centre, Toronto, ON, Canada.
Epigenetic therapies facilitate transcription of immunogenic repetitive elements that cull cancer cells through 'viral mimicry' responses. Paradoxically, cancer-initiating events also facilitate transcription of repetitive elements. Contributions of repetitive element transcription towards cancer initiation, and the mechanisms by which cancer cells evade lethal viral mimicry responses during tumor initiation remain poorly understood.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:
The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea.
The present study investigated the photoprotective effect of the ultrasonic-assisted ethanol extract (USHE) from , a brown seaweed containing fucosterol (6.22 ± 0.06 mg/g), sulfoquinovosyl glycerolipids (CHOS, CHOS, CHOS, CHOS), and polyphenols, against oxidative damage in ultraviolet B (UVB)-exposed HaCaT keratinocytes.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
Exposure to exogenous and endogenous stress is associated with the intracellular accumulation of aberrant unfolded and misfolded proteins. In eukaryotic cells, protein homeostasis within membrane-bound organelles is regulated by specialized signaling pathways, with the unfolded protein response in the endoplasmic reticulum serving as a foundational example. Yet, it is unclear if a similar surveillance mechanism exists in the nucleus.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!