Immunotherapy is widely used to treat various cancers, and the drugs used are called immune checkpoint (ICP) inhibitors. Overexpression of immune cell checkpoints is reported for other human diseases such as acute infections (malaria), chronic viral infection (HIV, hepatitis B virus, TB infections), allergy, asthma, neurodegeneration, and autoimmune diseases. Some mAbs (monoclonal antibodies) are available against ICPs, but they have side effects. Small molecule seems to be safer in comparison with mAbs. Three independent small-molecule inhibitor libraries consisting of 9466 compounds were screened against seven immune cell checkpoints by applying high-throughput virtual screening approach. A total of 13 ICP inhibitors were finalized based on docking, MM-GBSA scores, and ADME properties. Six compounds were selected for MD simulation, and then, rutin hydrate (targeting all seven immune cell checkpoints), amikacin hydrate (targeting six), and 6-hydroxyluteolin (targeting three) were found to be the best immune cell checkpoint inhibitors. These three potential inhibitors have shown the potential to activate human immune cells and thus may control the spread of human lifestyle or infectious diseases. Proposed inhibitors warrant the in vitro and in vivo validation to develop it as an immunotherapeutic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-022-10452-2 | DOI Listing |
J Neurochem
January 2025
Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.
View Article and Find Full Text PDFSTAR Protoc
December 2024
University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Equipe Labellisée Ligue Contre le Cancer, Lille, France. Electronic address:
Cancer progression and treatment outcomes are heavily influenced by the tumor microenvironment (TME), especially through immune cell interactions. Here, we present a protocol for generating co-cultures of tumoroids with macrophages, either semi-liquid or Matrigel-embedded. We describe steps for macrophage preparation, co-culture establishment, and medium adjustments to support cell viability and function.
View Article and Find Full Text PDFCell Rep
December 2024
Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; AUTOTAC Bio, Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea. Electronic address:
The human body reacts to tissue damage by generating damage-associated molecular patterns (DAMPs) that activate sterile immune responses. To date, little is known about how DAMPs are removed to avoid excessive immune responses. Here, we show that proteasomal dysfunction induces the release of mitochondrial DNA (mtDNA) as a DAMP that activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway and is subsequently degraded through the N-degron pathway.
View Article and Find Full Text PDFMicrobiol Immunol
December 2024
Department of Oral Microbiology and Immunology, Showa University Graduate School of Dentistry, Shinagawa-ku, Tokyo, Japan.
J Physiol
December 2024
Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!