Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery.

ACS Macro Lett

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China.

Published: September 2018

In this manuscript, we designed and synthesized three core cross-linked micelles (-, -, and -) with redox-responsive disulfide bonds in the core and carrying optically active helical polyisocyanide arms. Their arms were different in the helicity of the main chain and the chirality of the side groups. These micelles showed excellent redox-responsiveness to reducing agent. However, because of the different chiralities of the arms, the three micelles exhibited different performances in drug delivery and controlled release. The - micelle carrying left-handed helical arms showed better therapeutic effect than the other two due to the rapid cell membrane permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.8b00610DOI Listing

Publication Analysis

Top Keywords

core cross-linked
8
cross-linked micelles
8
carrying optically
8
optically active
8
active helical
8
drug delivery
8
arms
5
synthesis redox-responsive
4
redox-responsive core
4
micelles
4

Similar Publications

Controlled PVA Release from Chemical-Physical Interpenetrating Networks to Treat Dry Eyes.

ACS Omega

January 2025

Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada.

Dry eye disease is becoming increasingly prevalent, and lubricating eye drops, a mainstay of its treatment, have a short duration of time on the ocular surface. Although there are various drug delivery methods to increase the ocular surface residence time of a topical lubricant, the main problem is the burst release from these delivery systems. To overcome this limitation, herein, a chemical-physical interpenetrating network (IPN) was fabricated to take control over the release of poly(vinyl alcohol) (PVA), a well-known therapeutic agent used to stabilize tear film, from gelatin methacrylate (GelMA) hydrogels.

View Article and Find Full Text PDF

Neuron-inspired CsPbBr/PDMS nanospheres for multi-dimensional sensing and interactive displays.

Light Sci Appl

January 2025

National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.

Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.

View Article and Find Full Text PDF

The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration.

View Article and Find Full Text PDF

Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.

View Article and Find Full Text PDF

The recently developed phenoplast-related polymer, poly(benzofuran--arylacetic acid), presents a versatile molecular structure containing lactone and carboxylic acid functionalities that offer significant flexibility in creating cured materials with tailored properties for diverse applications, wherein also the thermal conductivity is an important factor. This study analyses the possibility of forming amide moieties of poly(benzofuran--arylacetic acid) with diamines resulting in cross-linked products in order to control its thermal properties. The cross-linking process is achieved by utilizing three distinct diamines, 1,6-diaminohexane, -xylylenediamine, and 4,7,10-trioxa-1,13-tridecanediamine, each possessing different degrees of polarity, flexibility, and reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!