This study aimed to evaluate the mixed and homogeneous application of the inactivated SARS-CoV-2 vaccine CoronaVac (CV) and the mRNA vaccine BNT162b2 (BNT). This prospective cohort study included 235 health care workers who had received two prime shots with CoronaVac. They were divided into three cohorts after the third month: Cohort-I (CV/CV); Cohort-II (CV/CV/CV); and Cohort-III (CV/CV/BNT). Anti-S-RBD-IgG and total anti-spike/anti-nucleocapsid-IgG antibody concentrations were examined in vaccinated health workers at the 1st, 3rd, and 6th months following the second dose of the vaccination. The mean age of 235 health care workers who participated in the project was 39.51 ± 10.39 (min-max: 22-64). At the end of the 6th month, no antibodies were detected in 16.7% of Cohort-I participants, and anti-S-RDB IgG levels showed a decrease of 60% compared to the levels of the 3rd month. The antibody concentrations of the 6th month were found to have increased by an average of 5.13 times compared to the 3rd-month levels in Cohort-II and 20.4 times in Cohort-III. The heterologous vaccination strategy "CoronaVac and BNT162b2 regimen" is able to induce a stronger humoral immune response and it will help remove inequalities in the developing world where CoronaVac was the initial prime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147346 | PMC |
http://dx.doi.org/10.3390/vaccines10050687 | DOI Listing |
Pathogens
January 2025
Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', National Reference Center for Brucellosis, 64100 Teramo, Italy.
Rose Bengal antigen and smooth lipopolysaccharide (s-LPS) were produced from a field strain of ("homologous" antigens) and from the reference strain S99 ("heterologous" antigens); they are currently used for the diagnosis of brucellosis in cattle, water buffaloes, sheep, goats, and pigs, as recommended in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (WOAH). "Homologous" and "heterologous" antigens were used in a rapid serum agglutination test (Rose Bengal test, RBT) and a competitive ELISA assay (c-ELISA) to test a panel of sera, blood, and other body fluids (cerebrospinal fluid, pericardial fluid, tracheal fluid, and aqueous humor) collected from 71 individuals belonging to five cetacean species (; ; ; ; and ), which were found stranded on the Italian coastline. Six animals were positive for spp.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
Background/objectives: In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved.
Methods: To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors.
Vaccines (Basel)
January 2025
International Centre for Diarrhoeal Disease Research, Bangladesh, 68, Shaheed Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh.
Background: Vaccination has played a crucial role in mitigating the spread of COVID-19 and reducing its severe outcomes. While over 90% of Bangladesh's population has received at least one COVID-19 vaccine dose, the comparative effectiveness of homologous versus heterologous booster strategies, along with the complex interplay of factors within the population, remains understudied. This study aimed to compare antibody responses between these booster approaches.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, Saint-Petersburg 197022, Russia.
Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!