Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Industry 4.0 constitutes a major application domain for sensor data analytics. Industrial furnaces (IFs) are complex machines made with special thermodynamic materials and technologies used in industrial production applications that require special heat treatment cycles. One of the most critical issues while operating IFs is the emission of black carbon (EoBC), which is due to a large number of factors such as the quality and amount of fuel, furnace efficiency, technology used for the process, operation practices, type of loads and other aspects related to the process conditions or mechanical properties of fluids at furnace operation. This paper presents a methodological approach to predict EoBC during the operation of IFs with the use of predictive models of machine learning (ML). We make use of a real data set with historical operation to train ML models, and through evaluation with real data we identify the most suitable approach that best fits the characteristics of the data set and implementation constraints in real production environments. The evaluation results confirm that it is possible to predict the undesirable EoBC well in advance, by means of a predictive model. To the best of our knowledge, this paper is the first approach to detail machine-learning concepts for predicting EoBC in the IF industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143315 | PMC |
http://dx.doi.org/10.3390/s22103947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!