Synthetic aperture sonar (SAS) and interferometric synthetic aperture sonar (InSAS) have a range layover phenomenon during underwater observation, the AUV-mounted circular synthetic aperture sonar (CSAS) system, that insonifies targets using multiple circular scans that vary in height and can eliminate the layover phenomenon. However, this observation method is time-consuming and difficult to compensate. To solve this problem, the circular array synthetic aperture sonar (CASAS) based on the equivalent phase center was established for unmanned surface vehicles. Corresponding to the echo signal model of circular array synthetic aperture sonar, a novel three-dimensional imaging algorithm was derived. Firstly, the echo datacube was processed by signal calibration with near-field to far-field transformation and grid interpolation. Then, the sparse recover method was adopted to achieve the scattering coefficient in the height direction by sparse Bayesian learning. Thirdly, the Fourier slice theorem was adopted to obtain the 2D image of the ground plane. After the reconstruction of all height slice cells was accomplished, the final 3D image was obtained. Numerical simulations and experiments using the USV-mounted CASAS system were performed. The imaging results verify the effectiveness of the 3D imaging algorithm for the proposed model and validate the feasibility of CASAS applied in underwater target imaging and detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147049 | PMC |
http://dx.doi.org/10.3390/s22103797 | DOI Listing |
Sci Rep
December 2024
Department of Science Education, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, 24341, Gangwon-do, Republic of Korea.
The eruption in Fagradalsfjall Volcano, located in Reykjanes Peninsula, Iceland, from several centuries' dormant states, occurred for the first time on March 19, 2021. Observations of Fagradalsfjall Volcano were conducted in 2021, and the eruption period lasted for six months until 18 September 2021. Six days pair of interferograms were generated from ninety synthetic aperture radar (SAR) data.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh.
Bhasan Char has undergone noteworthy transformations in its geographical characteristics since its emergence in 2003. Driven by sediment transported by the Ganges-Brahmaputra-Meghna river system, the island has gradually transitioned from a stretched-out configuration to a more rounded shape primarily due to continuous accretion, while erosion has been minimal since 2012. Currently, the island is being prepared to accommodate over 1 million Forcefully Displaced Myanmar Nationals (FDMN) refugees.
View Article and Find Full Text PDFMar Environ Res
December 2024
School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. Electronic address:
The oil spill is a significant source of marine pollution, causing severe harm to marine ecosystems. Detecting oil spills accurately using synthetic aperture radar (SAR) images is crucial for protecting the environment. However, oil spill targets in SAR images are small and resemble other objects "look-alike".
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam.
The urban setting notwithstanding, rice cultivation prevails on the outskirts of Hanoi, with the burning of rice straw in the fields posing a significant challenge. Therefore, it is crucial to conduct spatial mapping of rice distribution, assess dry biomass, and determine emissions from rice straw burning within Hanoi city. The efficacy of the deep convolutional neural networks (DCNN) model has been evident in accurately mapping the spatial distribution of rice in Hanoi, where rice cultivation extensively thrives in suburban areas.
View Article and Find Full Text PDFData Brief
December 2024
Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, Colombia.
This article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders-SAR_VV, SAR_VH, RGB, and NDVI-each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!