The development of a machine's condition monitoring system is often a challenging task. This process requires the collection of a sufficiently large dataset on signals from machine operation, context information related to the operation conditions, and the diagnosis experience. The two referred problems are today relatively easy to solve. The hardest to describe is the diagnosis experience because it is based on imprecise and non-numerical information. However, it is essential to process acquired data to develop a robust monitoring system. This article presents a framework for a system dedicated to recommending processing algorithms for condition monitoring. It includes a database and fuzzy-logic-based modules composed within the system. Based on the contextual knowledge provided by the user, the procedure suggests processing algorithms. This paper presents the evaluation of the proposed agent on two different parallel gearboxes. The results of the system are processing algorithms with assigned model types. The obtained results show that the algorithms recommended by the system achieve a higher accuracy than those selected arbitrarily. The results obtained allow for an average of 5 to 14.5% higher accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146414 | PMC |
http://dx.doi.org/10.3390/s22103695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!