Like smart phones, the recent years have seen an increased usage of internet of things (IoT) technology. IoT devices, being resource constrained due to smaller size, are vulnerable to various security threats. Recently, many distributed denial of service (DDoS) attacks generated with the help of IoT botnets affected the services of many websites. The destructive botnets need to be detected at the early stage of infection. Machine-learning models can be utilized for early detection of botnets. This paper proposes one-class classifier-based machine-learning solution for the detection of IoT botnets in a heterogeneous environment. The proposed one-class classifier, which is based on one-class KNN, can detect the IoT botnets at the early stage with high accuracy. The proposed machine-learning-based model is a lightweight solution that works by selecting the best features leveraging well-known filter and wrapper methods for feature selection. The proposed strategy is evaluated over different datasets collected from varying network scenarios. The experimental results reveal that the proposed technique shows improved performance, consistent across three different datasets used for evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145805PMC
http://dx.doi.org/10.3390/s22103646DOI Listing

Publication Analysis

Top Keywords

iot botnets
12
internet things
8
early stage
8
iot
5
botnets
5
lightweight internet
4
things botnet
4
botnet detection
4
one-class
4
detection one-class
4

Similar Publications

IoT (Internet of Things) networks are vulnerable to network viruses and botnets, while facing serious network security issues. The prediction of payload states in IoT networks can detect network attacks and achieve early warning and rapid response to prevent potential threats. Due to the instability and packet loss of communications between victim network nodes, the constructed protocol state machines of existing state prediction schemes are inaccurate.

View Article and Find Full Text PDF

Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things (IoT) technology is an advanced technique that is quickly increasing owing to the development of a network of organized online devices. In today's digital era, the IoT is considered one of the most robust technologies.

View Article and Find Full Text PDF

A cost-effective adaptive repair strategy to mitigate DDoS-capable IoT botnets.

PLoS One

December 2024

School of Big Data & Software Engineering, Chongqing University, Chongqing, China.

Distributed denial of service (DDoS) is a type of cyberattack in which multiple compromised systems flood the bandwidth or resources of a single system, making the flooded system inaccessible to legitimate users. Since large-scale botnets based on the Internet of Things (IoT) have been hotbeds for launching DDoS attacks, it is crucial to defend against DDoS-capable IoT botnets effectively. In consideration of resource constraints and frequent state changes for IoT devices, they should be equipped with repair measures that are cost-effective and adaptive to mitigate the impact of DDoS attacks.

View Article and Find Full Text PDF

Internet of Things (IoT) devices are much closer to users than personal computers used in traditional computing environments. Due to prevalence of IoT devices, even if they are compromised and used in attacks, it is difficult to detect and respond to them. Currently, there has been extensive research on threat modeling for cyberattacks.

View Article and Find Full Text PDF

The Internet of Things (IoT) permeates various sectors, including healthcare, smart cities, and agriculture, alongside critical infrastructure management. However, its susceptibility to malware due to limited processing power and security protocols poses significant challenges. Traditional antimalware solutions fall short in combating evolving threats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!