YAG ceramic fiber, with its high thermal conductivity and easy to achieve limit size, provides design flexibility as a laser gain medium. Its mainstream forming method was mainly high-pressure extrusion, but there were disadvantages, such as lack of flexibility. In this work, the flexible green body of YAG ceramic fiber was prepared by melt spinning. The melting characteristics of TPU with four different Shore hardnesses were systematically investigated. The microstructure, element homogeneity of the surface and fracture SEM images of the prepared ceramic fiber were also analyzed in detail. The optimized process parameters of YAG ceramic fiber preparation were as follows: the melting temperature was 220 °C, the screw feed rate of the double-cone screw extruder was F = 15.0 mm/min and the TPU-95A# was used. The ceramic fiber with the mass ratio of TPU-95A# to ceramic powder = 4:6 had the best microstructure quality. It had good flexibility and could be knotted with a bending radius of about 2.5 mm, and the tensile strength reached approximately 20 MPa. These results are crucial for advancing YAG ceramic fiber applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147338 | PMC |
http://dx.doi.org/10.3390/polym14102096 | DOI Listing |
Molecules
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Pineapple leaf fibres represent a biodegradable raw material sourced from renewable resources whose use contributes to reducing the carbon footprint and limiting the amount of waste generated. Their potential applications can effectively decrease the industry's dependence on plastics and support sustainable development, which should accompany the production of modern materials. In this study, polyurethane-based composites reinforced with various types of natural cellulose fillers were developed and investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:
Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Textiles, Donghua University, Shanghai, 201620, China.
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!