The majority of chitosan-based bone tissue engineering (BTE) scaffolds have the problem of poor mechanical properties. However, modifying chitosan with conventional silane coupling agents to improve the mechanical properties of scaffolds will introduce additional complications, including cytotoxicity and poor biocompatibility. In this study, two types of organic−inorganic composite scaffolds (F-A-T0/T3/T5 and F-B-T5-P0/P0.5/P1.5/P2.5) were prepared using chitosan nanofibers (CSNF) prepared by the beating-homogenization method, combined with the sol−gel method, and further introduced polyvinyl alcohol (PVA). The F-A-T3 and F-B-T5-P1.5 exhibited interconnected pore and surface nanofibers structures, high porosity (>70%), outstanding swelling properties, and a controllable degradation rate. The Young’s modulus of TEOS: 5.0% (w/w), PVA: 1.5% (w/w) chitosan fiber scaffold is 8.53 ± 0.43 MPa in dry conditions, and 237.78 ± 8.86 kPa in wet conditions, which is four times that of F-A-T5 and twice that of F-B-T5-P0. Additionally, cell (MC3T3-E1) experiments confirmed that the two composite scaffolds had great cytocompatibility and were predicted to be used in the future in the field of BTE scaffolds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147700 | PMC |
http://dx.doi.org/10.3390/polym14102083 | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:
Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure.
View Article and Find Full Text PDFTalanta
January 2025
School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China. Electronic address:
Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.
View Article and Find Full Text PDFCurr Drug Targets
January 2025
School of Pharmaceutical Sciences, Shoolini University, Solan, HP, India.
A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced only in the mouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!