Chloride ions in the seaside environment can corrode the steel reinforcement in concrete, which greatly endangers the safety of seaside structures. As an excellent adsorption material, hydrogel is widely used in the field of water treatment but is rarely used in cementitious materials. In this study, a polyacrylamide-chitosan hydrogel (PAMC) was prepared with N,N-methylenebisacrylamide as the cross-linking agent and acrylamide as the monomer. The prepared PAMC gel could effectively adsorb chloride ions in simulated seawater and simulated sea sand environments, and the maximum adsorption capacity of chloride ions by PAMC-1 (prepared from 2.5 g acrylamide and 1% content of N,N-methylenebisacrylamide relative to acrylamide) gels in simulated seawater was 55.53 mg/g. The adsorption behavior of the PAMC gels in solution fit the Langmuir isotherm model. The composition and morphology of the PAMC gel were characterized, and the responsiveness of the PAMC gel to the environment was studied. The results showed that the PAMC gels adsorbed better in alkaline environments and thus could be used in alkaline cement-based environments. The mortar sample containing the PAMC-1 gel had higher resistance to chloride ion penetration, and the chloride ion content at 7.5-10mm from the surface of the sample cured for 28 days was reduced by 41.4% compared to the samples without the gel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146488 | PMC |
http://dx.doi.org/10.3390/polym14102081 | DOI Listing |
Nature
January 2025
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA.
Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth and detected by remote sensing on icy bodies in the outer Solar System. The mineralogical evolution of these brines is well understood in regard to terrestrial environments, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
Introduction: Premenstrual dysphoric disorder (PMDD) is a cyclical mood disorder that severely affects the daily life of women of reproductive age. Most of the medications being used clinically have limitations such as low efficacy, side effects, and high cost, so there is an urgent need to discover safer and more effective medications. Rutin is a natural flavonol glycoside with various pharmacological properties including antidepressant.
View Article and Find Full Text PDFChemSusChem
January 2025
Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.
Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!