Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their Application as Flame Retardants.

Polymers (Basel)

Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

Published: May 2022

Common flame retardants, such as halogen-based materials, are being phased-out owing to their harmful environmental and health effects. We prepared poly-(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) microspheres, nanotubes, capsicum-like nanotubes, and branched nanotubes as flame retardants. An increase in reaction temperature changed the morphology from nanotubes to microspheres. A PZS shape had a positive effect on the flame retardancy of polyethylene terephthalate (PET). The PZS with a capsicum-like nanotube morphology had the best flame retardancy, and the PET limiting oxygen index increased from 25.2% to 34.4%. The flame retardancy capability was followed by PZS microspheres (33.1%), branched nanotubes (32.8%), and nanotubes (32.5%). The capsicum-like nanotubes promote the formation of highly dense and continuous carbon layers, and they release a non-combustible gas (CO). This study confirms polyphosphazene-based flame retardants as viable and environmentally-friendly alternatives to common flame retardants. It also presents a novel and facile design and synthesis of morphology-controlled nanomaterials with enhanced flame retardant properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144817PMC
http://dx.doi.org/10.3390/polym14102072DOI Listing

Publication Analysis

Top Keywords

flame retardants
20
flame retardancy
12
flame
9
common flame
8
pzs microspheres
8
capsicum-like nanotubes
8
branched nanotubes
8
nanotubes
7
retardants
5
morphology-controlled synthesis
4

Similar Publications

TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling.

View Article and Find Full Text PDF

The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment.

View Article and Find Full Text PDF

Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China.

Environ Sci Technol

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs).

View Article and Find Full Text PDF

Novel Flame Retardants (NFRs) in E-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management.

Toxicology

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels-Belgium.

Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.

View Article and Find Full Text PDF

Developing eco-friendly and effective flame retardants is crucial for enhancing the fire resistance of polymeric materials. This study developed a novel nitrogen‑phosphorus (NP) synergistic nanocellulose-based flame retardant (CNC-PEI-PA) by grafting polyethyleneimine (PEI) and phytic acid (PA) onto the CNC. CNC-PEI-PA demonstrated remarkable thermal stability, char-forming ability, and antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!