In this work, we apply the sequential processing (SqP) method to address the relatively low electron mobility in recent all-polymer solar cells (all-PSCs) based on the polymerized small-molecule acceptor (PSMA). Compared to the blend-casting (BC) method, all-PSCs composed of PM6/PY-IT via the SqP method show boosted electron mobility and a more balanced charge carrier transport, which increases the FF of the SqP device and compensates for the short-circuit current loss, rendering comparable overall performance with the BC device. Through film-depth-dependent light absorption spectroscopy, we analyze the sub-layer absorption and exciton generation rate in the vertical direction of the device, and discuss the effect of the increased electron mobility on device performance, accordingly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144747 | PMC |
http://dx.doi.org/10.3390/polym14102058 | DOI Listing |
Sci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States.
In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!