Geopolymer foams are excellent materials in terms of mechanical loads and fire resistance applications. This study investigated the foaming process of geopolymers and foam stability, with a focus on the fire resistance performance when using polystyrene as the base layer. The main purpose is to define the influence of porosity on the physical properties and consequently to find applications and effectiveness of geopolymers. In this study, lightweight materials are obtained through a process called geopolymerization. Foaming was done by adding aluminum powder at the end of the geopolymer mortar preparation. The interaction between the aluminum powder and the alkaline solution (used for the binder during the mixing process) at room temperature is reactive enough to develop hydrogen-rich bubbles that increase the viscosity and promote the consolidation of geopolymers. The basic principle of thermodynamic reactions responsible for the formation of foams is characterized by hydrogen-rich gas generation, which is then trapped in the molecular structure of geopolymers. The geopolymer foams in this study are highly porous and robust materials. Moreover, the porosity distribution is very homogeneous. Experimental assessments were performed on four specimens to determine the density, porosity, mechanical strength, and thermal conductivity. The results showed that our geopolymer foams layered on polystyrene boards (with optimal thickness) have the highest fire resistance performance among others. This combination could withstand temperatures of up to 800 °C for more than 15 min without the temperature rising on the insulated side. Results of the best-performing geopolymer foam underline the technical characteristics of the material, with an average apparent density of 1 g/cm, a volume porosity of 55%, a thermal conductivity of 0.25 W/mK, and excellent fire resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143971 | PMC |
http://dx.doi.org/10.3390/polym14101945 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
To reduce the environmental impact of plastics, an increasing number of high-performance sustainable materials have emerged. Among them, wood-based high-performance structural materials have gained growing attention due to their outstanding mechanical and thermal properties. Here, we introduce phosphate groups onto the wood veneers for surface nanofibrillation, effectively altering both the molecular structure and surface morphology of wood, which enhances the interactions between wood veneers and endows the wood with excellent fire resistance properties.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China; Suzhou Key Laboratory for Urban Public Safety, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, PR China. Electronic address:
The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO.
View Article and Find Full Text PDFACS Nano
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Emergency Management, Nanjing Tech University, Nanjing 211816, China.
Lithium-ion batteries (LIBs) have broad application prospects in many fields because of their high energy density. However, the poor heat resistance of polyolefin membranes and uneven lithium deposition result in battery failure and even infamous thermal runaway behavior. To improve the intrinsic safety of batteries, fire-retardant, thermally conductive, electrospinning strategies are employed to acquire a functional polyacrylonitrile (PAN) nanofiber separator (PAN@FBN/TPP) containing modified boron nitride (FBN) and triphenyl phosphate (TPP).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!