Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Somatic embryogenesis (SE) is a complex biological process regulated by several factors, such as the action of plant growth regulators, namely auxins, of which the most physiologically relevant is indole-3-acetic acid (IAA). In tamarillo, an optimized system for induction of SE creates, after an induction process, embryogenic (EC) and non-embryogenic (NEC). In this work the endogenous levels of auxin along the induction phase and in the samples were investigated using chemical quantifications by colorimetric reactions and HPLC as well as immunohistochemistry approaches. Differential gene expression and ) analysis during the induction phase was also carried out. The results showed that the endogenous IAA content is considerably higher in embryogenic than in non-embryogenic , with a tendency to increase as the dedifferentiation of the original explant (leaf segments) evolves. Furthermore, the degradation rates of IAA seem to be related to these levels, as non-embryogenic tissue presents a higher degradation rate. The immunohistochemical results support the quantifications made, with higher observable labeling on embryogenic tissue that tends to increase along the induction phase. Differential gene expression also suggests a distinct molecular response between EC and NEC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144520 | PMC |
http://dx.doi.org/10.3390/plants11101347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!