A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

D-Alpha-Tocopheryl Poly(ethylene Glycol 1000) Succinate-Coated Manganese-Zinc Ferrite Nanomaterials for a Dual-Mode Magnetic Resonance Imaging Contrast Agent and Hyperthermia Treatments. | LitMetric

Manganese-zinc ferrite (MZF) is known as high-performance magnetic material and has been used in many fields and development. In the biomedical applications, the biocompatible MZF formulation attracted much attention. In this study, water-soluble amphiphilic vitamin E (TPGS, d-alpha-tocopheryl poly(ethylene glycol 1000) succinate) formulated MZF nanoparticles were synthesized to serve as both a magnetic resonance imaging (MRI) contrast agent and a vehicle for creating magnetically induced hyperthermia against cancer. The MZF nanoparticles were synthesized from a metallic acetylacetonate in an organic phase and further modified with TPGS using an emulsion and solvent-evaporation method. The resulting TPGS-modified MZF nanoparticles exhibited a dual-contrast ability, with a longitudinal relaxivity (35.22 s mM Fe) and transverse relaxivity (237.94 s mM Fe) that were both higher than Resovist. Furthermore, the TPGS-assisted MZF formulation can be used for hyperthermia treatment to successfully suppress cell viability and tumor growth after applying an alternating current (AC) electromagnetic field at lower amplitude. Thus, the TPGS-assisted MZF theranostics can not only be applied as a potential contrast agent for MRI but also has potential for use in hyperthermia treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144495PMC
http://dx.doi.org/10.3390/pharmaceutics14051000DOI Listing

Publication Analysis

Top Keywords

contrast agent
12
mzf nanoparticles
12
d-alpha-tocopheryl polyethylene
8
polyethylene glycol
8
glycol 1000
8
manganese-zinc ferrite
8
magnetic resonance
8
resonance imaging
8
hyperthermia treatments
8
mzf formulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!