Amorphous solid dispersion is a popular formulation approach for orally administered poorly water-soluble drugs, especially for BCS class II. But oral delivery could not be an automatic choice for some drugs with high first-pass metabolism susceptibility. In such cases, transdermal delivery is considered an alternative if the drug is potent and the dose is less than 10 mg. Amorphization of drugs causes supersaturation and enhances the thermodynamic activity of the drugs. Hence, drug transport through the skin could be improved. The stabilization of amorphous system is a persistent challenge that restricts its application. A polymeric system, where amorphous drug is dispersed in a polymeric carrier, helps its stability. However, high excipient load often becomes problematic for the polymeric amorphous system. Coamorphous formulation is another approach, where one drug is mixed with another drug or low molecular weight compound, which stabilizes each other, restricts crystallization, and maintains a single-phase homogenous amorphous system. Prevention of recrystallization along with enhanced skin permeation has been observed by the transdermal coamorphous system. But scalable manufacturing methods, extensive stability study and in-depth in vivo evaluation are lacking. This review has critically studied the mechanistic aspects of amorphization and transdermal permeation by analyzing recent researches in this field to propose a future direction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143970PMC
http://dx.doi.org/10.3390/pharmaceutics14050983DOI Listing

Publication Analysis

Top Keywords

amorphous system
12
amorphization drugs
8
formulation approach
8
amorphous
5
drug
5
system
5
transdermal
4
drugs transdermal
4
transdermal delivery-a
4
delivery-a update
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!